1921
Volume 94, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

causes life-long disease after infection and leads to cardiac disease in 30% of infected individuals. After infection, the parasites are readily detectable in the blood during the first few days before disseminating to infect numerous cell types. Preliminary data suggested that the Tc24 protein that localizes to the membrane during all life stages possesses B-cell superantigenic properties. These antigens facilitate immune escape by interfering with antibody-mediated responses, particularly the avoidance of catalytic antibodies. These antibodies are an innate host defense mechanism present in the naive repertoire, and catalytic antibody–antigen binding results in hydrolysis of the target. We tested the B-cell superantigenic properties of Tc24 by comparing the degree of Tc24 hydrolysis by IgM purified from either Tc24 unexposed or exposed mice and humans. Respective samples were subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis, silver stained, and the degree of hydrolysis was measured. Data presented in this report suggest that the Tc24 is a B-cell superantigen based on the observations that 1) Tc24 was hydrolyzed by IgM present in serum of unexposed mice and humans and 2) exposure to Tc24 eliminated catalytic activity as early as 4 days after infection.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0438
2016-01-06
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/94/1/114.html?itemId=/content/journals/10.4269/ajtmh.15-0438&mimeType=html&fmt=ahah

References

  1. Hotez PJ, Dumonteil E, Woc-Colburn L, Serpa JA, Bezek S, Edwards MS, Hallmark CJ, Musselwhite LW, Flink BJ, Bottazzi ME, , 2012. Chagas disease: the new HIV/AIDS of the Americas. PLoS Negl Trop Dis 6: e1498.[Crossref] [Google Scholar]
  2. Hotez PJ, Dumonteil E, Betancourt Cravioto M, Bottazzi ME, Tapia-Conyer R, Meymandi S, Karunakara U, Ribeiro I, Cohen RM, Pecoul B, , 2013. An unfolding tragedy of Chagas disease in North America. PLoS Negl Trop Dis 7: e2300.[Crossref] [Google Scholar]
  3. Bern C, Kjos S, Yabsley MJ, Montgomery SP, , 2011. Trypanosoma cruzi and Chagas' disease in the United States. Clin Microbiol Rev 24: 655681.[Crossref] [Google Scholar]
  4. Bern C, , 2012. Chagas disease in the immunosuppressed host. Curr Opin Infect Dis 25: 450457.[Crossref] [Google Scholar]
  5. Urbina JA, , 2014. Recent clinical trials for the etiological treatment of chronic Chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol 62: 149156.[Crossref] [Google Scholar]
  6. Rassi A, Jr Dias JC, Marin-Neto JA, Rassi A, , 2009. Challenges and opportunities for primary, secondary, and tertiary prevention of Chagas' disease. Heart 95: 524534.[Crossref] [Google Scholar]
  7. Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, Kamhawi S, Ortega J, Rosales SP, Lee BY, Bacon KM, Fleischer B, Slingsby BT, Cravioto MB, Tapia-Conyer R, Hotez PJ, , 2012. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines 11: 10431055.[Crossref] [Google Scholar]
  8. Lee BY, Bacon KM, Wateska AR, Bottazzi ME, Dumonteil E, Hotez PJ, , 2012. Modeling the economic value of a Chagas' disease therapeutic vaccine. Hum Vaccin Immunother 8: 12931301.[Crossref] [Google Scholar]
  9. Kearney JF, Patel P, Stefanov EK, King RG, , 2015. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu Rev Immunol 33: 475504.[Crossref] [Google Scholar]
  10. Paul S, Nishiyama Y, Planque S, Taguchi H, , 2005. Theory of proteolytic antibody occurrence. Immunol Lett 103: 816.[Crossref] [Google Scholar]
  11. Paul S, , 1996. Natural catalytic antibodies. Mol Biotechnol 5: 197207.[Crossref] [Google Scholar]
  12. Planque S, Bangale Y, Song XT, Karle S, Taguchi H, Poindexter B, Bick R, Edmundson A, Nishiyama Y, Paul S, , 2004. Ontogeny of proteolytic immunity: IgM serine proteases. J Biol Chem 279: 1402414032.[Crossref] [Google Scholar]
  13. Janeway CA, Travers P, Walprot M, Shlomchik M, , 2005. Immunobiology: The Immune System in Health and Disease. New York, NY: Garland Science, 135168. [Google Scholar]
  14. Planque SA, Nishiyama Y, Hara M, Sonoda S, Murphy SK, Watanabe K, Mitsuda Y, Brown EL, Massey RJ, Primmer SR, O'Nuallain B, Paul S, , 2014. Physiological IgM class catalytic antibodies selective for transthyretin amyloid. J Biol Chem 289: 1324313258.[Crossref] [Google Scholar]
  15. Paul S, , 2011. Two-faced catalytic autoantibodies. Blood 117: 20842086.[Crossref] [Google Scholar]
  16. Lacroix-Desmazes S, Bayry J, Kaveri SV, Hayon-Sonsino D, Thorenoor N, Charpentier J, Luyt CE, Mira JP, Nagaraja V, Kazatchkine MD, Dhainaut JF, Mallet VO, , 2005. High levels of catalytic antibodies correlate with favorable outcome in sepsis. Proc Natl Acad Sci USA 102: 41094113.[Crossref] [Google Scholar]
  17. Lacroix-Desmazes S, Mallet V, Wootla B, Kaveri SV, , 2005. Catalytic antibodies and severe sepsis. Discov Med 5: 209212. [Google Scholar]
  18. Planque S, Nishiyama Y, Taguchi H, Salas M, Hanson C, Paul S, , 2008. Catalytic antibodies to HIV: physiological role and potential clinical utility. Autoimmun Rev 7: 473479.[Crossref] [Google Scholar]
  19. Brown EL, Nishiyama Y, Dunkle JW, Aggarwal S, Planque S, Watanabe K, Csencsits-Smith K, Bowden MG, Kaplan SL, Paul S, , 2012. Constitutive production of catalytic antibodies to a Staphylococcus aureus virulence factor and effect of infection. J Biol Chem 287: 99409951.[Crossref] [Google Scholar]
  20. Goodyear CS, Silverman GJ, , 2005. B cell superantigens: a microbe's answer to innate-like B cells and natural antibodies. Springer Semin Immunopathol 26: 463484.[Crossref] [Google Scholar]
  21. Silverman GJ, Goodyear CS, , 2006. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6: 465475.[Crossref] [Google Scholar]
  22. Planque S, Nishiyama Y, Taguchi H, Salas M, Hanson C, Paul S, , 2008. Catalytic antibodies to HIV: physiological role and potential clinical utility. Autoimmun Rev 7: 473479.[Crossref] [Google Scholar]
  23. Da Silva AC, Espinoza AG, Taibi A, Ouaissi A, Minoprio P, , 1998. A 24,000 MW Trypanosoma cruzi antigen is a B-cell activator. Immunology 94: 189196.[Crossref] [Google Scholar]
  24. Ouaissi A, Da Silva AC, Guevara AG, Borges M, Guilvard E, , 2001. Trypanosoma cruzi-induced host immune system dysfunction: a rationale for parasite immunosuppressive factor(s) encoding gene targeting. J Biomed Biotechnol 1: 1117.[Crossref] [Google Scholar]
  25. Ouaissi MA, Taibi A, Cornette J, Velge P, Marty B, Loyens M, Esteva M, Rizvi FS, Capron A, , 1990. Characterization of major surface and excretory-secretory immunogens of Trypanosoma cruzi trypomastigotes and identification of potential protective antigen. Parasitology 100: 115124.[Crossref] [Google Scholar]
  26. Da Silva AC, Espinoza AG, Taibi A, Ouaissi A, Minoprio P, , 1998. A 24,000 MW Trypanosoma cruzi antigen is a B-cell activator. Immunology 94: 189196.[Crossref] [Google Scholar]
  27. Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, Plieskatt J, Liu S, Wang Y, Bueno L, Fujiwara R, Samuel A, Ahn SY, Solanki M, Asojo OA, Wang J, Bethony JM, Loukas A, Roy M, Hotez PJ, , 2005. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 23: 47544764.[Crossref] [Google Scholar]
  28. Brown EL, Dumitrescu O, Thomas D, Badiou C, Koers EM, Choudhury P, Vazquez V, Etienne J, Lina G, Vandenesch F, Bowden MG, , 2009. The Panton-Valentine leukocidin vaccine protects mice against lung and skin infections caused by Staphylococcus aureus USA300. Clin Microbiol Infect 15: 156164.[Crossref] [Google Scholar]
  29. Huang DB, Brown EL, DuPont HL, Cerf J, Carlin L, Flores J, Belkind-Gerson J, Nataro JP, Okhuysen PC, , 2008. Seroprevalence of the enteroaggregative Escherichia coli virulence factor dispersin among USA travellers to Cuernavaca, Mexico: a pilot study. J Med Microbiol 57: 476479.[Crossref] [Google Scholar]
  30. Labandeira-Rey M, Couzon F, Boisset S, Brown EL, Bes M, Benito Y, Barbu EM, Vazquez V, Hook M, Etienne J, Vandenesch F, Bowden MG, , 2007. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315: 11301133.[Crossref] [Google Scholar]
  31. Brown EL, Bowden MG, Bryson RS, Hulten KG, Bordt AS, Forbes A, Kaplan SL, , 2009. Pediatric antibody response to community-acquired Staphylococcus aureus infection is directed to Panton-Valentine leukocidin. Clin Vaccine Immunol 16: 139141.[Crossref] [Google Scholar]
  32. Canavaci AM, Bustamante JM, Padilla AM, Perez Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL, , 2010. In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 4: e740.[Crossref] [Google Scholar]
  33. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ, , 2004. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 72: 4653.[Crossref] [Google Scholar]
  34. Garcia MN, Murray KO, Hotez PJ, Rossmann SN, Gorchakov R, Ontiveros A, Woc-Colburn L, Bottazzi ME, Rhodes CE, Ballantyne CM, Aguilar D, , 2015. Development of chagas cardiac manifestations among Texas blood donors. Am J Cardiol 115: 113117.[Crossref] [Google Scholar]
  35. Garcia MN, Aguilar D, Gorchakov R, Rossmann SN, Montgomery SP, Rivera H, Woc-Colburn L, Hotez PJ, Murray KO, , 2014. Evidence of autochthonous Chagas disease in southeastern Texas. Am J Trop Med Hyg 92: 325330.[Crossref] [Google Scholar]
  36. Brown EL, Kim JH, Reisenbichler ES, Hook M, , 2005. Multicomponent lyme vaccine: three is not a crowd. Vaccine 23: 36873696.[Crossref] [Google Scholar]
  37. Paul S, Karle S, Planque S, Taguchi H, Salas M, Nishiyama Y, Handy B, Hunter R, Edmundson A, Hanson C, , 2004. Naturally occurring proteolytic antibodies: selective immunoglobulin M-catalyzed hydrolysis of HIV gp120. J Biol Chem 279: 3961139619.[Crossref] [Google Scholar]
  38. Uda T, Hifumi E, , 2004. Super catalytic antibody and antigenase. J Biosci Bioeng 97: 143152.[Crossref] [Google Scholar]
  39. Odintsova ES, Buneva VN, Nevinsky GA, , 2005. Casein-hydrolyzing activity of sIgA antibodies from human milk. J Mol Recognit 18: 413421.[Crossref] [Google Scholar]
  40. Beliveau F, Desilets A, Leduc R, , 2009. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides. FEBS J 276: 22132226.[Crossref] [Google Scholar]
  41. Planque SA, Mitsuda Y, Chitsazzadeh V, Gorantla S, Poluektova L, Nishiyama Y, Ochsenbauer C, Morris MK, Sapparapu G, Hanson CV, Massey RJ, Paul S, , 2014. Deficient synthesis of class-switched, HIV-neutralizing antibodies to the CD4 binding site and correction by electrophilic gp120 immunogen. AIDS 28: 22012211.[Crossref] [Google Scholar]
  42. Rodriguez AM, Santoro F, Afchain D, Bazin H, Capron A, , 1981. Trypanosoma cruzi infection in B-cell-deficient rats. Infect Immun 31: 524529. [Google Scholar]
  43. Perez AR, Tamae-Kakazu M, Pascutti MF, Roggero E, Serra E, Revelli S, Bottasso O, , 2005. Deficient control of Trypanosoma cruzi infection in C57BL/6 mice is related to a delayed specific IgG response and increased macrophage production of pro-inflammatory cytokines. Life Sci 77: 19451959.[Crossref] [Google Scholar]
  44. Pereira VR, Lorena VM, Nakazawa M, Luna CF, Silva ED, Ferreira AG, Krieger MA, Goldenberg S, Soares MB, Coutinho EM, Correa-Oliveira R, Gomes YM, , 2005. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol Res 96: 154161.[Crossref] [Google Scholar]
  45. Roggero E, Perez A, Tamae-Kakazu M, Piazzon I, Nepomnaschy I, Wietzerbin J, Serra E, Revelli S, Bottasso O, , 2002. Differential susceptibility to acute Trypanosoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities. Clin Exp Immunol 128: 421428.[Crossref] [Google Scholar]
  46. Graefe SE, Meyer BS, Muller-Myhsok B, Ruschendorf F, Drosten C, Laue T, Steeg C, Nurnberg P, Fleischer B, , 2003. Murine susceptibility to Chagas' disease maps to chromosomes 5 and 17. Genes Immun 4: 321325.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0438
Loading
/content/journals/10.4269/ajtmh.15-0438
Loading

Data & Media loading...

Supplementary PDF

  • Received : 15 Jun 2015
  • Accepted : 09 Oct 2015
  • Published online : 06 Jan 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error