Volume 94, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Leptospirosis is the most common zoonotic disease worldwide with an estimated 500,000 severe cases reported annually, and case fatality rates of 12–25%, due primarily to acute kidney and lung injuries. Despite its prevalence, the molecular mechanisms underlying leptospirosis pathogenesis remain poorly understood. To identify virulence-related genes in , we delineated cumulative genome changes that occurred during serial in vitro passage of a highly virulent strain of serovar Lai into a nearly avirulent isogenic derivative. Comparison of protein coding and computationally predicted noncoding RNA (ncRNA) genes between these two polyclonal strains identified 15 nonsynonymous single nucleotide variant (nsSNV) alleles that increased in frequency and 19 that decreased, whereas no changes in allelic frequency were observed among the ncRNA genes. Some of the nsSNV alleles were in six genes shown previously to be transcriptionally upregulated during exposure to in vivo-like conditions. Five of these nsSNVs were in evolutionarily conserved positions in genes related to signal transduction and metabolism. Frequency changes of minor nsSNV alleles identified in this study likely contributed to the loss of virulence during serial in vitro culture. The identification of new virulence-associated genes should spur additional experimental inquiry into their potential role in pathogenesis.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, Levett PN, Gilman RH, Willig MR, Gotuzzo E, Vinetz JM, , 2003. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757771.[Crossref] [Google Scholar]
  2. Abela-Ridder B, Sikkema R, Hartskeerl RA, , 2010. Estimating the burden of human leptospirosis. Int J Antimicrob Agents 36 (Suppl 1): S5S7.[Crossref] [Google Scholar]
  3. Ko AI, Galvao Reis M, Ribeiro Dourado CM, Johnson WD, Jr Riley LW, , 1999. Urban epidemic of severe leptospirosis in Brazil. Salvador Leptospirosis Study Group. Lancet 354: 820825.[Crossref] [Google Scholar]
  4. Ricaldi JN, Fouts DE, Selengut JD, Harkins DM, Patra KP, Moreno A, Lehmann JS, Purushe J, Sanka R, Torres M, Webster NJ, Vinetz JM, Matthias MA, , 2012. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity. PLoS Negl Trop Dis 6: e1853.[Crossref] [Google Scholar]
  5. Matthias MA, Diaz MM, Campos KJ, Calderon M, Willig MR, Pacheco V, Gotuzzo E, Gilman RH, Vinetz JM, , 2005. Diversity of bat-associated Leptospira in the Peruvian Amazon inferred by bayesian phylogenetic analysis of 16S ribosomal DNA sequences. Am J Trop Med Hyg 73: 964974. [Google Scholar]
  6. Brenner DJ, Kaufmann AF, Sulzer KR, Steigerwalt AG, Rogers FC, Weyant RS, , 1999. Further determination of DNA relatedness between serogroups and serovars in the family Leptospiraceae with a proposal for Leptospira alexanderi sp. nov. and four new Leptospira genomospecies. Int J Syst Bacteriol 49: 839858.[Crossref] [Google Scholar]
  7. Bourhy P, Collet L, Brisse S, Picardeau M, , 2014. Leptospira mayottensis sp. nov., a pathogenic Leptospira species isolated from humans. Int J Syst Evol Microbiol 64: 40614607.[Crossref] [Google Scholar]
  8. Gouveia EL, Metcalfe J, de Carvalho AL, Aires TS, Villasboas-Bisneto JC, Queirroz A, Santos AC, Salgado K, Reis MG, Ko AI, , 2008. Leptospirosis-associated severe pulmonary hemorrhagic syndrome, Salvador, Brazil. Emerg Infect Dis 14: 505508.[Crossref] [Google Scholar]
  9. Ko AI, Goarant C, Picardeau M, , 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736747.[Crossref] [Google Scholar]
  10. Bourhy P, Louvel H, Saint Girons I, Picardeau M, , 2005. Random insertional mutagenesis of Leptospira interrogans, the agent of leptospirosis, using a mariner transposon. J Bacteriol 187: 32553258.[Crossref] [Google Scholar]
  11. Murray GL, Morel V, Cerqueira GM, Croda J, Srikram A, Henry R, Ko AI, Dellagostin OA, Bulach DM, Sermswan RW, Adler B, Picardeau M, , 2009. Genome-wide transposon mutagenesis in pathogenic Leptospira species. Infect Immun 77: 810816.[Crossref] [Google Scholar]
  12. Liao S, Sun A, Ojcius DM, Wu S, Zhao J, Yan J, , 2009. Inactivation of the fliY gene encoding a flagellar motor switch protein attenuates mobility and virulence of Leptospira interrogans strain Lai. BMC Microbiol 9: 253.[Crossref] [Google Scholar]
  13. Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J, , 2014. Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 209: 11051115.[Crossref] [Google Scholar]
  14. Zhang L, Zhang C, Ojcius DM, Sun D, Zhao J, Lin X, Li L, Li L, Yan J, , 2012. The mammalian cell entry (MCE) protein of pathogenic Leptospira species is responsible for RGD motif-dependent infection of cells and animals. Mol Microbiol 83: 10061023.[Crossref] [Google Scholar]
  15. Lo M, Bulach DM, Powell DR, Haake DA, Matsunaga J, Paustian ML, Zuerner RL, Adler B, , 2006. Effects of temperature on gene expression patterns in Leptospira interrogans serovar Lai as assessed by whole-genome microarrays. Infect Immun 74: 58485859.[Crossref] [Google Scholar]
  16. Qin JH, Sheng YY, Zhang ZM, Shi YZ, He P, Hu BY, Yang Y, Liu SG, Zhao GP, Guo XK, , 2006. Genome-wide transcriptional analysis of temperature shift in L. interrogans serovar lai strain 56601. BMC Microbiol 6: 51.[Crossref] [Google Scholar]
  17. Patarakul K, Lo M, Adler B, , 2010. Global transcriptomic response of Leptospira interrogans serovar Copenhageni upon exposure to serum. BMC Microbiol 10: 31.[Crossref] [Google Scholar]
  18. Matsunaga J, Lo M, Bulach DM, Zuerner RL, Adler B, Haake DA, , 2007. Response of Leptospira interrogans to physiologic osmolarity: relevance in signaling the environment-to-host transition. Infect Immun 75: 28642874.[Crossref] [Google Scholar]
  19. Lo M, Murray GL, Khoo CA, Haake DA, Zuerner RL, Adler B, , 2010. Transcriptional response of Leptospira interrogans to iron limitation and characterization of a PerR homolog. Infect Immun 78: 48504859.[Crossref] [Google Scholar]
  20. Xue F, Dong H, Wu J, Wu Z, Hu W, Sun A, Troxell B, Yang XF, Yan J, , 2010. Transcriptional responses of Leptospira interrogans to host innate immunity: significant changes in metabolism, oxygen tolerance, and outer membrane. PLoS Negl Trop Dis 4: e857.[Crossref] [Google Scholar]
  21. Caimano MJ, Sivasankaran SK, Allard A, Hurley D, Hokamp K, Grassmann AA, Hinton JC, Nally JE, , 2014. A model system for studying the transcriptomic and physiological changes associated with mammalian host-adaptation by Leptospira interrogans serovar Copenhageni. PLoS Pathog 10: e1004004.[Crossref] [Google Scholar]
  22. Eshghi A, Becam J, Lambert A, Sismeiro O, Dillies MA, Jagla B, Wunder EA, Jr Ko AI, Coppee JY, Goarant C, Picardeau M, , 2014. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans . Infect Immun 82: 25422552.[Crossref] [Google Scholar]
  23. Picardeau M, Bulach DM, Bouchier C, Zuerner RL, Zidane N, Wilson PJ, Creno S, Kuczek ES, Bommezzadri S, Davis JC, McGrath A, Johnson MJ, Boursaux-Eude C, Seemann T, Rouy Z, Coppel RL, Rood JI, Lajus A, Davies JK, Medigue C, Adler B, , 2008. Genome sequence of the saprophyte Leptospira biflexa provides insights into the evolution of Leptospira and the pathogenesis of leptospirosis. PLoS One 3: e1607.[Crossref] [Google Scholar]
  24. Adler B, Lo M, Seemann T, Murray GL, , 2011. Pathogenesis of leptospirosis: the influence of genomics. Vet Microbiol 153: 7381.[Crossref] [Google Scholar]
  25. Nascimento AL, Ko AI, Martins EA, Monteiro-Vitorello CB, Ho PL, Haake DA, Verjovski-Almeida S, Hartskeerl RA, Marques MV, Oliveira MC, Menck CF, Leite LC, Carrer H, Coutinho LL, Degrave WM, Dellagostin OA, El-Dorry H, Ferro ES, Ferro MI, Furlan LR, Gamberini M, Giglioti EA, Goes-Neto A, Goldman GH, Goldman MH, Harakava R, Jeronimo SM, Junqueira-de-Azevedo IL, Kimura ET, Kuramae EE, Lemos EG, Lemos MV, Marino CL, Nunes LR, de Oliveira RC, Pereira GG, Reis MS, Schriefer A, Siqueira WJ, Sommer P, Tsai SM, Simpson AJ, Ferro JA, Camargo LE, Kitajima JP, Setubal JC, Van Sluys MA, , 2004. Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186: 21642172.[Crossref] [Google Scholar]
  26. Nascimento AL, Verjovski-Almeida S, Van Sluys MA, Monteiro-Vitorello CB, Camargo LE, Digiampietri LA, Harstkeerl RA, Ho PL, Marques MV, Oliveira MC, Setubal JC, Haake DA, Martins EA, , 2004. Genome features of Leptospira interrogans serovar Copenhageni. Braz J Med Biol Res 37: 459477.[Crossref] [Google Scholar]
  27. Ren SX, Fu G, Jiang XG, Zeng R, Miao YG, Xu H, Zhang YX, Xiong H, Lu G, Lu LF, Jiang HQ, Jia J, Tu YF, Jiang JX, Gu WY, Zhang YQ, Cai Z, Sheng HH, Yin HF, Zhang Y, Zhu GF, Wan M, Huang HL, Qian Z, Wang SY, Ma W, Yao ZJ, Shen Y, Qiang BQ, Xia QC, Guo XK, Danchin A, Saint Girons I, Somerville RL, Wen YM, Shi MH, Chen Z, Xu JG, Zhao GP, , 2003. Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing. Nature 422: 888893.[Crossref] [Google Scholar]
  28. Lehmann JS, Fouts DE, Haft DH, Cannella AP, Ricaldi JN, Brinkac L, Harkins D, Durkin S, Sanka R, Sutton G, Moreno A, Vinetz JM, Matthias MA, , 2013. Pathogenomic inference of virulence-associated genes in Leptospira interrogans . PLoS Negl Trop Dis 7: e2468.[Crossref] [Google Scholar]
  29. Manary MJ, Singhakul SS, Flannery EL, Bopp SE, Corey VC, Bright AT, McNamara CW, Walker JR, Winzeler EA, , 2014. Identification of pathogen genomic variants through an integrated pipeline. BMC Bioinformatics 15: 63.[Crossref] [Google Scholar]
  30. Faine SAB, Bolin C, Perolat P, , 1999. Leptospira and leptospirosis. Melbourne, Australia: MedScience. [Google Scholar]
  31. Li H, Durbin R, , 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 17541760.[Crossref] [Google Scholar]
  32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup, 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 20782079.[Crossref] [Google Scholar]
  33. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ, , 2011. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491498.[Crossref] [Google Scholar]
  34. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA, , 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 12971303.[Crossref] [Google Scholar]
  35. Altenhoff AM, Dessimoz C, , 2009. Phylogenetic and functional assessment of orthologs inference projects and methods. PLOS Comput Biol 5: e1000262.[Crossref] [Google Scholar]
  36. Wolf YI, Koonin EV, , 2012. A tight link between orthologs and bidirectional best hits in bacterial and archaeal genomes. Genome Biol Evol 4: 12861294.[Crossref] [Google Scholar]
  37. Schultz J, Milpetz F, Bork P, Ponting CP, , 1998. SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95: 58575864.[Crossref] [Google Scholar]
  38. Jones DT, , 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292: 195202.[Crossref] [Google Scholar]
  39. Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT, , 2013. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41: W349-57.[Crossref] [Google Scholar]
  40. Capra JA, Singh M, , 2007. Predicting functionally important residues from sequence conservation. Bioinformatics 23: 18751882.[Crossref] [Google Scholar]
  41. Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, Haussler D, , 2011. Cactus: algorithms for genome multiple sequence alignment. Genome Res 21: 15121528.[Crossref] [Google Scholar]
  42. Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, Haussler D, , 2011. Cactus graphs for genome comparisons. J Comput Biol 18: 469481.[Crossref] [Google Scholar]
  43. Gruber AR, Findeiss S, Washietl S, Hofacker IL, Stadler PF, , 2010. RNAz 2.0: improved noncoding RNA detection. Pac Symp Biocomput 15: 6979. [Google Scholar]
  44. Herbig A, Nieselt K, , 2011. nocoRNAc: characterization of non-coding RNAs in prokaryotes. BMC Bioinformatics 12: 40.[Crossref] [Google Scholar]
  45. Tatusov RL, Koonin EV, Lipman DJ, , 1997. A genomic perspective on protein families. Science 278: 631637.[Crossref] [Google Scholar]
  46. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS, , 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 16081615.[Crossref] [Google Scholar]
  47. Romling U, Galperin MY, Gomelsky M, , 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77: 152.[Crossref] [Google Scholar]
  48. Ryan RP, , 2013. Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology 159: 12861297.[Crossref] [Google Scholar]
  49. Chan C, Paul R, Samoray D, Amiot NC, Giese B, Jenal U, Schirmer T, , 2004. Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci USA 101: 1708417089.[Crossref] [Google Scholar]
  50. Moglich A, Ayers RA, Moffat K, , 2009. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17: 12821294.[Crossref] [Google Scholar]
  51. Singh N, Kuppili RR, Bose K, , 2011. The structural basis of mode of activation and functional diversity: a case study with HtrA family of serine proteases. Arch Biochem Biophys 516: 8596.[Crossref] [Google Scholar]
  52. Maurel C, Reizer J, Schroeder JI, Chrispeels MJ, Saier MH, Jr, 1994. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes. J Biol Chem 269: 1186911872. [Google Scholar]
  53. Fu D, Libson A, Miercke LJ, Weitzman C, Nollert P, Krucinski J, Stroud RM, , 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290: 481486.[Crossref] [Google Scholar]
  54. Zhang D, de Souza RF, Anantharaman V, Iyer LM, Aravind L, , 2012. Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics. Biol Direct 7: 18.[Crossref] [Google Scholar]
  55. Zhang D, Iyer LM, Aravind L, , 2011. A novel immunity system for bacterial nucleic acid degrading toxins and its recruitment in various eukaryotic and DNA viral systems. Nucleic Acids Res 39: 45324552.[Crossref] [Google Scholar]
  56. Setubal JC, Reis M, Matsunaga J, Haake DA, , 2006. Lipoprotein computational prediction in spirochaetal genomes. Microbiology 152: 113121.[Crossref] [Google Scholar]
  57. Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS, , 2012. The molecular diversity of adaptive convergence. Science 335: 457461.[Crossref] [Google Scholar]
  58. Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM, Botstein D, Desai MM, , 2013. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500: 571574.[Crossref] [Google Scholar]
  59. Mazuz ML, Molad T, Fish L, Leibovitz B, Wolkomirsky R, Fleiderovitz L, Shkap V, , 2012. Genetic diversity of Babesia bovis in virulent and attenuated strains. Parasitology 139: 317323.[Crossref] [Google Scholar]
  60. Bawden FC, , 1958. Reversible changes in strains of tobacco mosaic virus from leguminous plants. J Gen Microbiol 18: 751766.[Crossref] [Google Scholar]
  61. Callow LL, Mellors LT, McGregor W, , 1979. Reduction in virulence of Babesia bovis due to rapid passage in splenectomized cattle. Int J Parasitol 9: 333338.[Crossref] [Google Scholar]
  62. Wong MM, Karr SL, Jr Chow CK, , 1977. Changes in the virulence of Naegleria fowleri maintained in vitro. J Parasitol 63: 872878.[Crossref] [Google Scholar]
  63. Ebert D, , 1998. Experimental evolution of parasites. Science 282: 14321435.[Crossref] [Google Scholar]
  64. Zhong Y, Chang X, Cao XJ, Zhang Y, Zheng H, Zhu Y, Cai C, Cui Z, Zhang Y, Li YY, Jiang XG, Zhao GP, Wang S, Li Y, Zeng R, Li X, Guo XK, , 2011. Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 21: 12101229.[Crossref] [Google Scholar]
  65. Galperin MY, Nikolskaya AN, Koonin EV, , 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203: 1121.[Crossref] [Google Scholar]
  66. Ausmees N, Mayer R, Weinhouse H, Volman G, Amikam D, Benziman M, Lindberg M, , 2001. Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity. FEMS Microbiol Lett 204: 163167.[Crossref] [Google Scholar]
  67. Tischler AD, Camilli A, , 2004. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol 53: 857869.[Crossref] [Google Scholar]
  68. Simm R, Morr M, Kader A, Nimtz M, Romling U, , 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53: 11231134.[Crossref] [Google Scholar]
  69. Tischler AD, Camilli A, , 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun 73: 58735882.[Crossref] [Google Scholar]
  70. Ristow P, Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M, , 2008. Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154: 13091317.[Crossref] [Google Scholar]
  71. Brihuega B, Samartino L, Auteri C, Venzano A, Caimi K, , 2012. In vivo cell aggregations of a recent swine biofilm-forming isolate of Leptospira interrogans strain from Argentina. Rev Argent Microbiol 44: 138143. [Google Scholar]
  72. He M, Zhang JJ, Ye M, Lou Y, Yang XF, , 2014. Cyclic di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi . Infect Immun 82: 445452.[Crossref] [Google Scholar]
  73. Bian J, Liu X, Cheng YQ, Li C, , 2013. Inactivation of cyclic di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola . J Bacteriol 195: 38973905.[Crossref] [Google Scholar]
  74. Novak EA, Sultan SZ, Motaleb MA, , 2014. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi . Front Cell Infect Microbiol 4: 56.[Crossref] [Google Scholar]
  75. Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR, , 2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 109: 2063220636.[Crossref] [Google Scholar]
  76. Kovacs-Simon A, Titball RW, Michell SL, , 2011. Lipoproteins of bacterial pathogens. Infect Immun 79: 548561.[Crossref] [Google Scholar]
  77. Ristow P, Bourhy P, da Cruz McBride FW, Figueira CP, Huerre M, Ave P, Girons IS, Ko AI, Picardeau M, , 2007. The OmpA-like protein Loa22 is essential for leptospiral virulence. PLoS Pathog 3: e97.[Crossref] [Google Scholar]
  78. Chatfield SN, Strahan K, Pickard D, Charles IG, Hormaeche CE, Dougan G, , 1992. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog 12: 145151.[Crossref] [Google Scholar]
  79. Sinha K, Mastroeni P, Harrison J, de Hormaeche RD, Hormaeche CE, , 1997. Salmonella typhimurium aroA, htrA, and aroD htrA mutants cause progressive infections in athymic (nu/nu) BALB/c mice. Infect Immun 65: 15661569. [Google Scholar]
  80. Johnson KS, Charles IG, Dougan G, Miller IA, Pickard D, O'Goara P, Costa G, Ali T, Hormaeche CE, , 1990. The role of a stress-response protein in bacterial virulence. Res Microbiol 141: 823825.[Crossref] [Google Scholar]
  81. Toledo-Arana A, Repoila F, Cossart P, , 2007. Small noncoding RNAs controlling pathogenesis. Curr Opin Microbiol 10: 182188.[Crossref] [Google Scholar]
  82. Papenfort K, Vogel J, , 2010. Regulatory RNA in bacterial pathogens. Cell Host Microbe 8: 116127.[Crossref] [Google Scholar]
  83. Storz G, Opdyke JA, Zhang A, , 2004. Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7: 140144.[Crossref] [Google Scholar]
  84. Gong H, Vu GP, Bai Y, Chan E, Wu R, Yang E, Liu F, Lu S, , 2011. A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog 7: e1002120.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 01 Jun 2015
  • Accepted : 08 Sep 2015
  • Published online : 03 Feb 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error