1921
Volume 94, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

(KP) is the most common cause of neonatal sepsis in the low- and middle-income countries. Our objective was to describe the phenotypic and molecular characteristics of extended-spectrum β-lactamase (ESBL)-producer KP in neonatal care centers from Peru. We collected 176 non-duplicate consecutive KP isolates from blood isolates of neonates from eight general public hospitals of Lima, Peru. The overall rate of ESBL production was 73.3% ( = 129). The resistance rates were higher among ESBL-producer isolates when compared with the nonproducers: 85.3% versus 12.8% for gentamicin ( < 0.01), 59.7% versus 8.5% for trimethoprim–sulfamethoxazole ( < 0.01), 45.0% versus 8.5% for ciprofloxacin ( < 0.01), and 36.4% versus 12.8% for amikacin ( < 0.01). A total of 359 β-lactamase-encoding genes were detected among 129 ESBL-producer isolates; 109 isolates (84.5%) carried two or more genes. Among 37 ESBL-producer isolates randomly selected, CTX-M-15 and CTX-M-2 were the most common ESBLs detected. Most of the isolates (92%) belonged to the group KpI. Pulsed-field gel electrophoresis showed that multiple KP clones were circulating among the eight neonatal units included.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0373
2016-02-03
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/14761645/94/2/285.html?itemId=/content/journals/10.4269/ajtmh.15-0373&mimeType=html&fmt=ahah

References

  1. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S, 1983. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens . Infect 11: 315317.[Crossref]
    [Google Scholar]
  2. Paterson D, Bonomo R, 2005. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18: 657686.[Crossref]
    [Google Scholar]
  3. Sader HS, Jones RN, Andrade-Baiocchi S, Biedenbach DJ, 2002. Four-year evaluation of frequency of occurrence and antimicrobial susceptibility patterns of bacteria from bloodstream infections in Latin American medical centers. Diagn Microbiol Infect Dis 44: 273280.[Crossref]
    [Google Scholar]
  4. Villegas M, Blanco M, 2011. Increasing prevalence of extended-spectrum-betalactamase among Gram-negative bacilli in Latin America—2008 update from the Study for Monitoring Antimicrobial Resistance Trends (SMART). Braz J Infect Dis 15: 3439.
    [Google Scholar]
  5. Hawser SP, Bouchillon SK, Lascols C, Hackel M, Hoban DJ, Badal RE, Woodford N, Livermore DM, 2011. Susceptibility of Klebsiella pneumoniae isolates from intra-abdominal infections and molecular characterization of ertapenem-resistant isolates. Antimicrob Agents Chemother 55: 39173921.[Crossref]
    [Google Scholar]
  6. Rossi F, Baquero F, Hsueh PR, Paterson DL, Bochicchio GV, Snyder TA, Satishchandran V, McCarroll K, DiNubile MJ, Chow JW, 2006. In vitro susceptibilities of aerobic and facultatively anaerobic Gram-negative bacilli isolated from patients with intra-abdominal infections worldwide: 2004 results from SMART (Study for Monitoring Antimicrobial Resistance Trends). J Antimicrob Chemother 58: 205210.[Crossref]
    [Google Scholar]
  7. Jones RN, Guzman-Blanco M, Gales AC, Gallegos B, Castro AL, Martino MD, Vega S, Zurita J, Cepparulo M, Castanheira M, 2013. Susceptibility rates in Latin American nations: report from a regional resistance surveillance program (2011). Braz J Infect Dis 17: 672681.[Crossref]
    [Google Scholar]
  8. Zaidi AKM, Huskins WC, Thaver D, Bhutta ZA, Abbas Z, Goldmann DA, 2005. Hospital-acquired neonatal infections in developing countries. Lancet 365: 11751188.[Crossref]
    [Google Scholar]
  9. Sjahrodji AM, 1990. Nosocomial infections in the Neonatal Intensive Care Unit Department of Child Health, Dr. Hasan Sadkin General Hospital, Bandung. Paediatr Indones 30: 191197.
    [Google Scholar]
  10. Nagata E, Brito A, Matsuo T, 2002. Nosocomial infection in a neonatal intensive care unit: incidence and risk factors. Am J Infect Control 30: 2631.[Crossref]
    [Google Scholar]
  11. Cotton MF, Wasserman E, Pieper CH, Theron DC, van Tubbergh D, Campbell G, Frang FC, Barnes J, 2000. Invasive disease due to extended spectrum beta-lactamase-producer Klebsiella pneumoniae in a neonatal unit: the possible role of cockroaches. J Hosp Infect 44: 1317.[Crossref]
    [Google Scholar]
  12. Dashti AA, Jadaon MM, Gomaa HH, Noronha B, Udo EE, 2010. Transmission of a Klebsiella pneumoniae clone harbouring genes for CTX-M-15-like and SHV-112 enzymes in a neonatal intensive care unit of a Kuwaiti hospital. J Med Microbiol 59: 687692.[Crossref]
    [Google Scholar]
  13. De Oliveira Garcia D, Doi Y, Szabo D, Adams-Haduch JM, Vaz TMI, Leite D, Padoveze MC, Freire MP, Silveira FP, Paterson DL, 2008. Multiclonal outbreak of Klebsiella pneumoniae producer extended-spectrum beta-lactamase CTX-M-2 and novel variant CTX-M-59 in a neonatal intensive care unit in Brazil. Antimicrob Agents Chemother 52: 17901793.[Crossref]
    [Google Scholar]
  14. Pessoa-Silva CL, Meurer Moreira B, Câmara Almeida V, Flannery B, Almeida Lins MC, Mello Sampaio JL, Teixeiras LM, Vaz Miranda LE, Riley LW, Gerberding JL, 2003. Extended-spectrum β-lactamase-producer Klebsiella pneumoniae in a neonatal intensive care unit: risk factors for infection and colonization. J Hosp Infect 53: 198206.[Crossref]
    [Google Scholar]
  15. Martinez-Aguilar G, Alpuche-Aranda CM, Anaya C, Alcantar-Curiel D, Gayosso C, Daza C, Mijares C, Tinoco JC, Santos JI, 2001. Outbreak of nosocomial sepsis and pneumonia in a newborn intensive care unit by multiresistant extended-spectrum beta-lactamase-producer Klebsiella pneumoniae: high impact on mortality. Infect Control Hosp Epidemiol 22: 725728.[Crossref]
    [Google Scholar]
  16. Clinical and Laboratory Standards Institute, 2012. Performance Standards for Antimicrobial Susceptibility Testing; Twenty Second Informational Supplement. M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute.
    [Google Scholar]
  17. Ben-Hamouda T, Foulon T, Ben-Cheikh-Masmoudi A, Belhadj O, Ben-Mahrez K, 2003. Molecular epidemiology of an outbreak of multiresistant Klebsiella pneumoniae in a Tunisian neonatal ward. J Med Microbiol 52: 427433.[Crossref]
    [Google Scholar]
  18. Tenover F, Arbeit R, 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 22332239.
    [Google Scholar]
  19. Vinué L, Lantero M, Sáenz Y, Somalo S, de Diego I, Pérez F, Ruiz-Larrea F, Torres C, 2008. Characterization of extended-spectrum beta-lactamases and integrons in Escherichia coli isolates in a Spanish hospital. J Med Microbiol 57: 916920.[Crossref]
    [Google Scholar]
  20. Bertrand S, Weill F, Cloeckaert A, Vrints M, Mairiaux E, Praud K, Dierik K, Wildmauve C, Godard C, Butaye P, Imberechts H, Grimont PAD, Collard JM, 2006. Clonal emergence of extended-spectrum beta-lactamase (CTX-M-2)-producer Salmonella enterica serovar Virchow isolates with reduced susceptibilities to ciprofloxacin among poultry and humans in Belgium and France (2000 to 2003). J Clin Microbiol 44: 28972903.[Crossref]
    [Google Scholar]
  21. Hopkins K, Deheer-Graham A, Threlfall E, Batchelor M, Liebana E, 2006. Novel plasmid-mediated CTX-M-8 subgroup extended-spectrum β-lactamase (CTX-M-40) isolated in the UK. Int J Antimicrob Agents 27: 572575.[Crossref]
    [Google Scholar]
  22. Brisse S, van Himbergen T, Kusters K, Verhoef J, 2004. Development of a rapid identification method for Klebsiella pneumoniae phylogenetic groups and analysis of 420 clinical isolates. Clin Microbiol Infect 10: 942945.[Crossref]
    [Google Scholar]
  23. Cantón R, Coque TM, 2006. The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 9: 466475.[Crossref]
    [Google Scholar]
  24. Sennati S, Santella G, Di Conza J, Pallecchi L, Pino M, Ghiglione B, Rossolini GM, Radice M, Gutkind G, 2012. Changing epidemiology of extended-spectrum β-lactamases in Argentina: emergence of CTX-M-15. Antimicrob Agents Chemother 56: 60036005.[Crossref]
    [Google Scholar]
  25. Seki LM, Pereira PS, de Souza Conceição M, Souza MJ, Marques EA, Carballido JM, de Carvalho ME, Assef AP, Asensi MD, 2013. Molecular epidemiology of CTX-M producer Enterobacteriaceae isolated from bloodstream infections in Rio de Janeiro, Brazil: emergence of CTX-M-15. Braz J Infect Dis 17: 640646.[Crossref]
    [Google Scholar]
  26. Pallecchi L, Bartoloni A, Fiorelli C, Mantella A, Di Maggio T, Gamboa H, Gotuzzo E, Kronvall G, Paridisi F, Rossolini GM, 2007. Rapid dissemination and diversity of CTX-M extended-spectrum beta-lactamase genes in commensal Escherichia coli isolates from healthy children from low-resource settings in Latin America. Antimicrob Agents Chemother 51: 27202725.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0373
Loading
/content/journals/10.4269/ajtmh.15-0373
Loading

Data & Media loading...

Supplementary PDF

  • Received : 19 May 2015
  • Accepted : 23 Oct 2015
  • Published online : 03 Feb 2016
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error