Volume 94, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial gene sequence identified the same two haplotype sequences during 2011–2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011–2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Morens DM, Fauci AS, , 2014. Chikungunya at the door—déjà vu all over again? N Engl J Med 371: 885887.[Crossref] [Google Scholar]
  2. Anez G, Rios M, , 2013. Dengue in the United States of America: a worsening scenario? BioMed Res Int 2013: 678645.[Crossref] [Google Scholar]
  3. Eisen L, Moore CG, , 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467478.[Crossref] [Google Scholar]
  4. Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT, , 2015. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil Trans R Soc B 370: pii: 20140135.[Crossref] [Google Scholar]
  5. Russell BM, Foley PN, Kay BH, , 1996. The importance of surface versus subterranean breeding sites for mosquitoes during winter in north Queensland. Arbovirus Res Aust 7: 240242. [Google Scholar]
  6. Davis NC, , 1932. The effects of heat and cold upon Aedes (Stegomyia) aegypti . Am J Hyg 16: 177191. [Google Scholar]
  7. Darsie RF, Ward RA, , 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University of Florida Press. [Google Scholar]
  8. Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW, , 2009. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics 10: 590.[Crossref] [Google Scholar]
  9. Hemme RR, Thomas CL, Chadee DD, Severson DW, , 2010. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti . PLoS Negl Trop Dis 4: e634.[Crossref] [Google Scholar]
  10. EBI, 2014. Clustal Omega. Available at: http://www.ebi.ac.uk. [Google Scholar]
  11. VectorBase, 2014. Aedes aegypti. Available at: http://www.vectorbase.org. [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, , 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 27252729.[Crossref] [Google Scholar]
  13. Excoffier L, Laval G, Schneider S, , 2005. Arlequin ver. 3.5: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  14. Pritchard JK, Stephens M, Donnelly P, , 2013. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  15. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.[Crossref] [Google Scholar]
  16. Moore M, Sylla M, Goss L, Burugu MW, Sang R, Kamau LW, Kenya EU, Bosio C, de Lourdes Munoz M, Sharakova M, Black WC, , 2013. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7: e2175.[Crossref] [Google Scholar]
  17. Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux AB, , 2005. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res 86: 111.[Crossref] [Google Scholar]
  18. Bracco JE, Capurro ML, Lourenco-de-Oliveira R, Sallum MAM, , 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence for multiple introductions. Mem Inst Oswaldo Cruz 102: 573580.[Crossref] [Google Scholar]
  19. Damal K, Murrell EG, Juliano SA, Conn JE, Loew SS, , 2013. Phylogeography of Aedes aegypti (yellow fever mosquito) in south Florida: mtDNA evidence for human-aided dispersal. Am J Trop Med Hyg 89: 482488.[Crossref] [Google Scholar]
  20. NOAA, 2015. Washington D.C. Average Temperatures. Available at: http://www.erh.noaa.gov/lwx/climate/dca/dcatemps.txt. Accessed March 26, 2015. [Google Scholar]

Data & Media loading...

  • Received : 12 May 2015
  • Accepted : 29 Sep 2015
  • Published online : 06 Jan 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error