Volume 93, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The genus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean–Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ergonul O, , 2012. Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2: 215220.[Crossref] [Google Scholar]
  2. Ergonul O, , 2006. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6: 203214.[Crossref] [Google Scholar]
  3. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M, , 2013. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100: 159189.[Crossref] [Google Scholar]
  4. Davies FG, , 1997. Nairobi sheep disease. Parassitologia 39: 9598. [Google Scholar]
  5. Terpstra C, Coetzer JAW, Thompson GR, Tustin RC, , 1994. Nairobi sheep disease. , eds. Infectious Diseases of Livestock with Special Reference to Southern Africa. Cape Town, South Africa: Oxford University Press, 718722. [Google Scholar]
  6. Marczinke BI, Nichol ST, , 2002. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology 303: 146151.[Crossref] [Google Scholar]
  7. Gong S, He B, Wang Z, Shang L, Wei F, Liu Q, Tu C, , 2015. Nairobi sheep disease virus RNA in Ixodid ticks, China, 2013. Emerg Infect Dis 21: 718720.[Crossref] [Google Scholar]
  8. Lasecka L, Baron MD, , 2014. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch Virol 159: 12491265.[Crossref] [Google Scholar]
  9. Casals J, Tignor GH, , 1980. The Nairovirus genus: serological relationships. Intervirology 14: 144147.[Crossref] [Google Scholar]
  10. Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn CS, Tesh RB, King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, , 2012. Family Bunyaviridae. , eds. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Amsterdam, The Netherlands: Elsevier Academic Press, 725741. [Google Scholar]
  11. Honig JE, Osborne JC, Nichol ST, , 2004. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321: 2935.[Crossref] [Google Scholar]
  12. Marriott AC, Nuttall PA, , 1996. Large RNA segment of Dugbe nairovirus encodes the putative RNA polymerase. J Gen Virol 77: 17751780.[Crossref] [Google Scholar]
  13. Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R, , 2004. Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321: 2328.[Crossref] [Google Scholar]
  14. Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST, , 2003. Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77: 86408649.[Crossref] [Google Scholar]
  15. Sanchez AJ, Vincent MJ, Nichol ST, , 2002. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76: 72637275.[Crossref] [Google Scholar]
  16. Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST, , 2006. Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J Virol 80: 514525.[Crossref] [Google Scholar]
  17. Altamura LA, Bertolotti-Ciarlet A, Teigler J, Paragas J, Schmaljohn CS, Doms RW, , 2007. Identification of a novel C-terminal cleavage of Crimean-Congo hemorrhagic fever virus preGn that leads to generation of an NSm protein. J Virol 81: 66326642.[Crossref] [Google Scholar]
  18. Wang Y, Dutta S, Karlberg H, Devignot S, Weber F, Hao Q, Tan YJ, Mirazimi A, Kotaka M, , 2012. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage. J Virol 86: 1229412303.[Crossref] [Google Scholar]
  19. Guo Y, Wang W, Ji W, Deng M, Sun Y, Zhou H, Yang C, Deng F, Wang H, Hu Z, Lou Z, Rao Z, , 2012. Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in Bunyaviruses. Proc Natl Acad Sci USA 109: 50465051.[Crossref] [Google Scholar]
  20. Karabatsos N, , 1985. International Catalogue of Arboviruses Including Certain other Viruses of Vertebrates. San Antonio, TX: American Society for Tropical Medicine and Hygiene. [Google Scholar]
  21. Dilcher M, Koch A, Hasib L, Dobler G, Hufert FT, Weidmann M, , 2012. Genetic characterization of Erve virus, a European nairovirus distantly related to Crimean-Congo hemorrhagic fever virus. Virus Genes 45: 426432.[Crossref] [Google Scholar]
  22. Chastel C, Main AJ, Richard P, Le Lay G, Legrand-Quillien MC, Beaucournu JC, , 1989. Erve virus, a probable member of Bunyaviridae family isolated from shrews (Crocidura russula) in France. Acta Virol 33: 270280. [Google Scholar]
  23. Zeller HG, Karabatsos N, Calisher CH, Digoutte JP, Cropp CB, Murphy FA, Shope RE, , 1989. Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae. Arch Virol 108: 211227.[Crossref] [Google Scholar]
  24. Kalunda M, Mukwaya LG, Mukuye A, Lule M, Sekyalo E, Wright J, Casals J, , 1986. Kasokero virus: a new human pathogen from bats (Rousettus aegyptiacus) in Uganda. Am J Trop Med Hyg 35: 387392. [Google Scholar]
  25. Dietzgen RG, Calisher CH, Kurath G, Kuzman IV, Rodriguez LL, Stone DM, Tesh RB, Tordo N, Walker PJ, Wetzel T, Whitfield AE, King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, , 2012. Rhabdoviridae. , eds. Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier, 654681. [Google Scholar]
  26. Blasdell KR, Guzman H, Widen SG, Firth C, Wood TG, Holmes EC, Tesh RB, Vasilakis N, Walker PJ, , 2015. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats. Am J Trop Med Hyg 92: 405410.[Crossref] [Google Scholar]
  27. Varma MG, Converse JD, , 1976. Keterah virus infections in four species of Argas ticks (Ixodoidea: Argasidae). J Med Entomol 13: 6570.[Crossref] [Google Scholar]
  28. Lvov DK, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG, Veselovskaya OV, Osipova NZ, Grebenyuk YI, Gromashesvki VL, Steblyanko SN, Fomina KB, , 1973. “Issyk-Kul” virus, a new arbovirus isolated from bats and Argas (Carios) vespertilionis (Latr., 1802) in the Kirghiz S.S.R. Arch Gesamte Virusforsch 42: 207209.[Crossref] [Google Scholar]
  29. Lvov DK, Kostiukov MA, Daniiarov OA, Tukhtaev TM, Sherikov BK, , 1984. Outbreak of arbovirus infection in the Tadzhik SSR due to the Issyk-kul virus (Issyk-kul fever). Vopr Virusol 29: 8992. [Google Scholar]
  30. Ishii A, Ueno K, Orba Y, Sasaki M, Moonga L, Hang'ombe BM, Mweene AS, Umemura T, Ito K, Hall WW, Sawa H, , 2014. A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nat Commun 5: e5651.[Crossref] [Google Scholar]
  31. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I, , 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 11171123.[Crossref] [Google Scholar]
  32. Langmead B, Salzberg SL, , 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357359.[Crossref] [Google Scholar]
  33. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, , 2011. Integrative genomics viewer. Nat Biotechnol 29: 2426.[Crossref] [Google Scholar]
  34. Clarke DH, Casals J, , 1958. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am J Trop Med Hyg 7: 561573. [Google Scholar]
  35. Tesh RB, Travassos da Rosa APA, Travassos da Rosa JS, , 1983. Antigenic relationship among rhabdoviruses infecting terrestrial vertebrates. J Gen Virol 64: 169176.[Crossref] [Google Scholar]
  36. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A, , 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649.[Crossref] [Google Scholar]
  37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O, , 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307321.[Crossref] [Google Scholar]
  38. Carter SD, Surtees R, Walter CT, Ariza A, Bergeron E, Nichol ST, Hiscox JA, Edwards TA, Barr JN, , 2012. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol 86: 1091410923.[Crossref] [Google Scholar]
  39. Carter SD, Barr JN, Edwards TA, , 2012. Expression, purification and crystallization of the Crimean-Congo haemorrhagic fever virus nucleocapsid protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 569573.[Crossref] [Google Scholar]
  40. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW, , 1997. Substrate specificities of caspase family proteases. J Biol Chem 272: 96779682.[Crossref] [Google Scholar]
  41. Karlberg H, Tan YJ, Mirazimi A, , 2011. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem 286: 32273234.[Crossref] [Google Scholar]
  42. Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS, Pegan SD, , 2011. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J Virol 85: 36213630.[Crossref] [Google Scholar]
  43. Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, Paragas J, Richt JA, Rowland RR, Schmaljohn CS, Lenschow DJ, Snijder EJ, Garcia-Sastre A, Virgin HW, 4th, 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2: 404416.[Crossref] [Google Scholar]
  44. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, , 2008. Global trends in emerging infectious diseases. Nature 451: 990993.[Crossref] [Google Scholar]
  45. Dowall SD, Findlay-Wilson S, Rayner E, Pearson G, Pickersgill J, Rule A, Merredew N, Smith H, Chamberlain J, Hewson R, , 2012. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus. J Gen Virol 93: 560564.[Crossref] [Google Scholar]
  46. Shi X, Kohl A, Leonard VH, Li P, McLees A, Elliott RM, , 2006. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J Virol 80: 80898099.[Crossref] [Google Scholar]
  47. Briese T, Rambaut A, Lipkin WI, , 2004. Analysis of the medium (M) segment sequence of Guaroa virus and its comparison to other orthobunyaviruses. J Gen Virol 85: 30713077.[Crossref] [Google Scholar]
  48. Lees JF, Pringle CR, Elliott RM, , 1986. Nucleotide sequence of the Bunyamwera virus M RNA segment: conservation of structural features in the Bunyavirus glycoprotein gene product. Virology 148: 114.[Crossref] [Google Scholar]
  49. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW, , 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98: 62416246.[Crossref] [Google Scholar]
  50. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ, , 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580584.[Crossref] [Google Scholar]
  51. Crabtree MB, Sang R, Miller BR, , 2009. Kupe virus, a new virus in the family Bunyaviridae, genus Nairovirus, Kenya. Emerg Infect Dis 15: 147154.[Crossref] [Google Scholar]
  52. Horne KM, Vanlandingham DL, , 2014. Bunyavirus-vector interactions. Viruses 6: 43734397.[Crossref] [Google Scholar]
  53. Begum F, Wisseman CL, Jr Casals J, , 1970. Tick-borne viruses of West Pakistan. II. Hazara virus, a new agent isolated from Ixodes redikorzevi ticks from the Kaghan Valley, W. Pakistan. Am J Epidemiol 92: 192194.[Crossref] [Google Scholar]
  54. David-West TS, , 1973. Dugbe virus: a new tick-borne arbovirus from Nigeria. Trans R Soc Trop Med Hyg 67: 438.[Crossref] [Google Scholar]
  55. Lvov DK, Timofeeva AA, Gromashevski VL, Chervonsky VI, Gromov AI, Tsyrkin YM, Pogrebenko AG, Kostyrko IN, , 1972. Sakhalin virus—a new arbovirus isolated from Ixodes (Ceratixodes) putus Pick.-Camb. 1878 collected on Tuleniy Island, Sea of Okhotsk. Arch Gesamte Virusforsch 38: 133138.[Crossref] [Google Scholar]
  56. Lvov DK, Al'khovskii SV, Shchelkanov M, Shchetinin AM, Deriabin PG, Aristova VA, Gitel'man AK, Samokhvalov EI, Botikov AG, , 2014. Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae, White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea. Vopr Virusol 59: 1117. [Google Scholar]
  57. Manzano-Román R, Díaz-Martín V, de la Fuente J, Pérez-Sánchez R, Shah MM, , 2012. Soft ticks as pathogen vectors: distribution, surveillance and control. , ed. Parasitology. Rijeka, Croatia: Intech, 125162. [Google Scholar]
  58. Shepherd AJ, Swanepoel R, Cornel AJ, Mathee O, , 1989. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg 40: 326331. [Google Scholar]
  59. Durden LA, Logan TM, Wilson ML, Linthicum KJ, , 1993. Experimental vector incompetence of a soft tick, Ornithodoros sonrai (Acari: Argasidae), for Crimean-Congo hemorrhagic fever virus. J Med Entomol 30: 493496.[Crossref] [Google Scholar]
  60. Lvov DK, Sidorova GA, Gromashevsky VL, Kurbanov M, Skvoztsova LM, Gofman YP, Berezina LK, Klimenko SM, Zakharyan VA, Aristova VA, Neronov VM, , 1976. Virus “Tamdy”—a new arbovirus, isolated in the Uzbee S.S.R. and Turkmen S.S.R. from ticks Hyalomma asiaticum asiaticum Schulee et Schlottke, 1929, and Hyalomma plumbeum plumbeum Panzer, 1796. Arch Virol 51: 1521.[Crossref] [Google Scholar]
  61. Lvov DK, Sidorova GA, Gromashevskii VL, Skvortsova TM, Berezina LK, , 1979. Chim virus, a new arbovirus isolated from ixodid and argasid ticks collected in the burrows of great gerbils on the territory of the Uzbek SSR. Vopr Virusol 24: 286289. [Google Scholar]
  62. Rodovsky FJ, Stiller D, , 1967. Descriptive notes on Ornithodoros ticks from gull nests on the Farallon islands and isolation of a variant of Hughes virus. J Parasitol 53: 890892.[Crossref] [Google Scholar]
  63. Converse JD, Hoogstraal H, Moussa MI, Evans DE, , 1976. Soldado virus from Ornithodoros (Alectorobius) maritimus (Ixodoidea: Argasidae) infesting herring gull nests on Puffin Island, northern Wales. Acta Virol 20: 243246. [Google Scholar]
  64. Keirans JE, Yunker CE, Clifford CM, Thomas LA, Walton GA, Kelly TC, , 1976. Isolation of a Soldado-like virus (Hughes group) from Ornithodorus maritimus ticks in Ireland. Experientia 32: 453454.[Crossref] [Google Scholar]
  65. Converse JD, Moussa MI, Easton ER, Casals J, , 1981. Punta Salinas virus (Hughes group) from Argas arboreus (Ixodoidea: Argasidae) in Tanzania. Trans R Soc Trop Med Hyg 75: 755756.[Crossref] [Google Scholar]
  66. Clerx JP, Bishop DH, , 1981. Qalyub virus, a member of the newly proposed Nairovirus genus (Bunyavividae). Virology 108: 361372.[Crossref] [Google Scholar]
  67. Honig JE, Osborne JC, Nichol ST, , 2004. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318: 1016.[Crossref] [Google Scholar]
  68. Alkhovskii SV, Lvov DK, Shchelkanov M, Shchetinin AM, Deriabin PG, Samokhvalov EI, Gitel'man AK, Botikov AG, , 2013. The taxonomy of the Issyk-Kul virus (ISKV, Bunyaviridae, Nairovirus), the etiologic agent of the Issyk-Kul fever isolated from bats (Vespertilionidae) and ticks Argas (Carios) vespertilionis (Latreille, 1796). Vopr Virusol 58: 1115. [Google Scholar]
  69. Treib J, Dobler G, Haass A, von Blohn W, Strittmatter M, Pindur G, Froesner G, Schimrigk K, , 1998. Thunderclap headache caused by Erve virus? Neurology 50: 509511.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 09 May 2015
  • Accepted : 29 Jun 2015
  • Published online : 04 Nov 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error