1921
Volume 93, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of , the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this colony need to be interpreted cautiously.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.15-0336
2015-11-04
2017-11-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/5/998.html?itemId=/content/journals/10.4269/ajtmh.15-0336&mimeType=html&fmt=ahah

References

  1. Berlocher SH, Friedman S, , 1981. Loss of genetic variation in laboratory colonies of Phormia regina . Entomol Exp Appl 30: 205208.[Crossref]
  2. Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G, , 2010. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. Insect Mol Biol 19: 695705.[Crossref]
  3. Oliva CF, Benedict MQ, Lempérière G, Gilles J, , 2011. Laboratory selection for an accelerated mosquito sexual development rate. Malar J 10: 135.[Crossref]
  4. Mason LJ, Pashley DP, Johnson SJ, , 1987. The laboratory as an altered habitat: phenotypic and genetic consequences of colonization. Fla Entomol 70: 4958.[Crossref]
  5. Sattler PW, Hilburn LR, Davey RB, George JE, Bernardo J, Avalos R, , 1986. Genetic similarity and variability between natural populations and laboratory colonies of North American Boophilus (Acari: Ixodidae). J Parasitol 72: 95100.[Crossref]
  6. Norris DE, Shurtleff AC, Touré YT, Lanzaro GC, , 2001. Microsatellite DNA polymorphism and heterogeneity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 38: 336340.[Crossref]
  7. Nei M, , 1975. Molecular Population Genetics and Evolution. New York, NY: American Elsevier Publishing Co.
  8. Aguilar R, Dong Y, Warr E, Dimopoulos G, , 2005. Anopheles infection responses: laboratory models versus field malaria transmission systems. Acta Trop 95: 285291.[Crossref]
  9. Arias L, Bejarano EE, Márquez E, Moncada J, Vélez I, Uribe S, , 2005. Mitochondrial DNA divergence between wild and laboratory populations of Anopheles albimanus Wiedemann (Diptera: Culicidae). Neotrop Entomol 34: 499506.[Crossref]
  10. Moreno M, Tong C, Guzman M, Chuquiyauri R, Llanos-Cuentas A, Rodriguez H, Gamboa D, Meister S, Winzeler EA, Maguina P, Conn JE, Vinetz JM, , 2014. Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax . Am J Trop Med Hyg 90: 612616.[Crossref]
  11. Faran ME, Linthicum KJ, , 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq Syst 13: 181.
  12. Consoli RA, Lourenco-de-Oliveira R, , 1994. Principais mosquitos de importância sanitária no Brasil. Rio de Janiero, Brazil: Fundação Oswaldo Cruz: Editora Fiocruz.[Crossref]
  13. Lainhart W, Bickersmith SA, Nadler KJ, Moreno M, Saavedra MP, Chu VM, Ribolla PE, Vinetz JM, Conn JE, , 2015. Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malaria J 14: 375 (29 September 2015).[Crossref]
  14. Glaubitz JC, , 2004. CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4: 309310.[Crossref]
  15. Excoffier L, Lischer HEL, , 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564567.[Crossref]
  16. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F, , 1996–2004. GENETIX 4.05, logiciel sous Windows(TM) pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier.
  17. Gaut BS, Long AD, , 2003. The lowdown on linkage disequilibrium. Plant Cell 15: 15021506.[Crossref]
  18. Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR, Zhu L, Ostrander EA, Wayne RK, , 2009. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181: 14931505.[Crossref]
  19. Ng'habi KR, Lee Y, Knols BGJ, Mwasheshi D, Lanzaro GC, Ferguson HM, , 2015. Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malar J 14: 10.[Crossref]
  20. Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS, , 2009. Colonisation and mass rearing: learning from others. Malar J 8 (Suppl 2): S4.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0336
Loading
/content/journals/10.4269/ajtmh.15-0336
Loading

Data & Media loading...

  • Received : 06 May 2015
  • Accepted : 17 Jun 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error