Volume 93, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The process of colonizing any arthropod species, including vector mosquitoes, necessarily involves adaptation to laboratory conditions. The adaptation and evolution of colonized mosquito populations needs consideration when such colonies are used as representative models for pathogen transmission dynamics. A recently established colony of , the primary malaria vector in Amazonian South America, was tested for genetic diversity and bottleneck after 21 generations, using microsatellites. As expected, laboratory had fewer private and rare alleles (frequency < 0.05), decreased observed heterozygosity, and more common alleles (frequency > 0.50), but no significant evidence of a bottleneck, decrease in total alleles, or increase in inbreeding compared with field specimens (founder population). Low-moderate differentiation between field and laboratory populations was detected. With these findings, and the documented inherent differences between laboratory and field populations, results of pathogen transmission studies using this colony need to be interpreted cautiously.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Berlocher SH, Friedman S, , 1981. Loss of genetic variation in laboratory colonies of Phormia regina . Entomol Exp Appl 30: 205208.[Crossref] [Google Scholar]
  2. Aguilar R, Simard F, Kamdem C, Shields T, Glass GE, Garver LS, Dimopoulos G, , 2010. Genome-wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms. Insect Mol Biol 19: 695705.[Crossref] [Google Scholar]
  3. Oliva CF, Benedict MQ, Lempérière G, Gilles J, , 2011. Laboratory selection for an accelerated mosquito sexual development rate. Malar J 10: 135.[Crossref] [Google Scholar]
  4. Mason LJ, Pashley DP, Johnson SJ, , 1987. The laboratory as an altered habitat: phenotypic and genetic consequences of colonization. Fla Entomol 70: 4958.[Crossref] [Google Scholar]
  5. Sattler PW, Hilburn LR, Davey RB, George JE, Bernardo J, Avalos R, , 1986. Genetic similarity and variability between natural populations and laboratory colonies of North American Boophilus (Acari: Ixodidae). J Parasitol 72: 95100.[Crossref] [Google Scholar]
  6. Norris DE, Shurtleff AC, Touré YT, Lanzaro GC, , 2001. Microsatellite DNA polymorphism and heterogeneity among field and laboratory populations of Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 38: 336340.[Crossref] [Google Scholar]
  7. Nei M, , 1975. Molecular Population Genetics and Evolution. New York, NY: American Elsevier Publishing Co. [Google Scholar]
  8. Aguilar R, Dong Y, Warr E, Dimopoulos G, , 2005. Anopheles infection responses: laboratory models versus field malaria transmission systems. Acta Trop 95: 285291.[Crossref] [Google Scholar]
  9. Arias L, Bejarano EE, Márquez E, Moncada J, Vélez I, Uribe S, , 2005. Mitochondrial DNA divergence between wild and laboratory populations of Anopheles albimanus Wiedemann (Diptera: Culicidae). Neotrop Entomol 34: 499506.[Crossref] [Google Scholar]
  10. Moreno M, Tong C, Guzman M, Chuquiyauri R, Llanos-Cuentas A, Rodriguez H, Gamboa D, Meister S, Winzeler EA, Maguina P, Conn JE, Vinetz JM, , 2014. Infection of laboratory-colonized Anopheles darlingi mosquitoes by Plasmodium vivax . Am J Trop Med Hyg 90: 612616.[Crossref] [Google Scholar]
  11. Faran ME, Linthicum KJ, , 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq Syst 13: 181. [Google Scholar]
  12. Consoli RA, Lourenco-de-Oliveira R, , 1994. Principais mosquitos de importância sanitária no Brasil. Rio de Janiero, Brazil: Fundação Oswaldo Cruz: Editora Fiocruz.[Crossref] [Google Scholar]
  13. Lainhart W, Bickersmith SA, Nadler KJ, Moreno M, Saavedra MP, Chu VM, Ribolla PE, Vinetz JM, Conn JE, , 2015. Evidence for temporal population replacement and the signature of ecological adaptation in a major Neotropical malaria vector in Amazonian Peru. Malaria J 14: 375 (29 September 2015).[Crossref] [Google Scholar]
  14. Glaubitz JC, , 2004. CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4: 309310.[Crossref] [Google Scholar]
  15. Excoffier L, Lischer HEL, , 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564567.[Crossref] [Google Scholar]
  16. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F, , 1996–2004. GENETIX 4.05, logiciel sous Windows(TM) pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier. [Google Scholar]
  17. Gaut BS, Long AD, , 2003. The lowdown on linkage disequilibrium. Plant Cell 15: 15021506.[Crossref] [Google Scholar]
  18. Gray MM, Granka JM, Bustamante CD, Sutter NB, Boyko AR, Zhu L, Ostrander EA, Wayne RK, , 2009. Linkage disequilibrium and demographic history of wild and domestic canids. Genetics 181: 14931505.[Crossref] [Google Scholar]
  19. Ng'habi KR, Lee Y, Knols BGJ, Mwasheshi D, Lanzaro GC, Ferguson HM, , 2015. Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations. Malar J 14: 10.[Crossref] [Google Scholar]
  20. Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS, , 2009. Colonisation and mass rearing: learning from others. Malar J 8 (Suppl 2): S4.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 06 May 2015
  • Accepted : 17 Jun 2015
  • Published online : 04 Nov 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error