Volume 93, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Malaria risk maps may be used to guide policy decisions on whether vector control interventions should be targeted and, if so, where. Active surveillance for malaria was conducted through household surveys in Nchelenge District, Zambia from April 2012 through December 2014. Households were enumerated based on satellite imagery and randomly selected for study enrollment. At each visit, participants were administered a questionnaire and a malaria rapid diagnostic test (RDT). Logistic regression models were used to construct spatial prediction risk maps and maps of risk uncertainty. A total of 461 households were visited, comprising 1,725 participants, of whom 48% were RDT positive. Several environmental features were associated with increased household malaria risk in a multivariable logistic regression model adjusting for seasonal variation. The model was validated using both internal and external evaluation measures to generate and assess root mean square error, as well as sensitivity and specificity for predicted risk. The final, validated model was used to predict and map malaria risk including a measure of risk uncertainty. Malaria risk in a high, perennial transmission setting is widespread but heterogeneous at a local scale, with seasonal variation. Targeting malaria control interventions may not be appropriate in this epidemiological setting.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kamuliwo M, Chanda E, Haque U, Mwanza-Ingwe M, Sikaala C, Katebe-Sakala C, Mukonka V, Norris D, Smith D, Glass G, Moss W, , 2013. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar J 12: 437.[Crossref] [Google Scholar]
  2. Coleman C, Coleman M, Mabuza A, Kok G, Coetzee M, Durrheim D, , 2009. Using the SaTScan method to detect local malaria clusters for guiding malaria control programmes. Malar J 8: 68.[Crossref] [Google Scholar]
  3. Smith D, McKenzie F, Snow R, Hay S, , 2007. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: 531542. [Google Scholar]
  4. Clennon JAKA, Musapa M, Shiff C, Glass GE, , 2010. Identifying malaria vector breeding habitats with remote sensing data and terrain-based landscape indices in Zambia. Int J Health Geogr 9: 58.[Crossref] [Google Scholar]
  5. Moss W, Hamapumbu H, Kobayashi T, Shields T, Kamanga A, Clennon J, Mharakurwa S, Thuma P, Glass G, , 2011. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community. Malar J 10: 163.[Crossref] [Google Scholar]
  6. Ghebreyesus T, Haile M, Witten K, Getachew A, Yohannes AM, Yohannes M, Teklehaimanot HD, Lindsay SW, Byass P, , 1999. Incidence of malaria among children living near dams in northern Ethiopia: community based incidence survey. BMJ 319: 663666.[Crossref] [Google Scholar]
  7. Nmor J, Sunahara T, Goto K, Futami K, Sonye G, Akewywa P, Dida G, Minakawa N, , 2013. Topographic models for predicting malaria vector breeding habitats: potential tools for vector control managers. Parasit Vectors 6: 14.[Crossref] [Google Scholar]
  8. Bejon P, Williams T, Liljander A, Noor A, Wambua J, Ogada E, Olotu A, Osier F, Hay S, Farnert A, Marsh K, , 2010. Stable and unstable malaria hostpots in longitudinal cohort studies in Kenya. PLoS Med 7: e1000304.[Crossref] [Google Scholar]
  9. Eisele T, Keating J, Swalm C, Mbogo C, Githeko A, Regens J, Githure J, Andrews L, Beier J, , 2003. Linking field-based ecological data with remotely sensed data using a geographic information system in two malaria endemic urban areas of Kenya. Malar J 2: 44.[Crossref] [Google Scholar]
  10. Pinault L, Hunter F, , 2012. Larval habitat associations with human land uses, roads, rivers, and land cover for Anopheles albimanus, A. pseudopunctipennis, and A. punctimacula (Diptera:Culicidae) in coastal and highland Ecuador. Front Physiol 3: 59.[Crossref] [Google Scholar]
  11. Omukunda E, Githeko A, Ndong'a M, Mushinzimana E, Yan G, , 2012. Effect of swamp cultivation on distribution of anopheline larval habitats in western Kenya. J Vector Borne Dis 49: 6171. [Google Scholar]
  12. Raso G, Schur N, Utzinger J, Koudou B, Tchicaya E, Rohner F, N'Goran E, Silue K, Matthys B, Assi S, Tanner M, Vounatsou P, , 2012. Mapping malaria risk among children in Cote d'Ivoire using Bayesian geo-statistical models. Malar J 11: 160.[Crossref] [Google Scholar]
  13. Craig M, Sharp B, Mabaso M, Kleinschmidt I, , 2007. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure. Int J Health Geogr 6: 44.[Crossref] [Google Scholar]
  14. Yeshiwondim A, Gopal S, Hailemariam A, Dengela D, Patel H, , 2009. Spatial analysis of malaria incidence at the village level in areas with unstable transmission in Ethiopia. Int J Health Geogr 8: 5.[Crossref] [Google Scholar]
  15. Riedel N, Vounatsou P, Miller J, Gosniu L, Chizema-Kawesha E, Mukonka V, Steketee R, , 2010. Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS). Malar J 9: 37.[Crossref] [Google Scholar]
  16. Gemperli A, Sogoba N, Fondjo E, Mabaso M, Bagayoko M, Briet O, Anderegg D, Liebe J, Smith T, Vounatsou P, , 2006. Mapping malaria transmission in west and central Africa. Trop Med Int Health 11: 10321046.[Crossref] [Google Scholar]
  17. Hay S, Guerra C, Gething P, Patil A, Tatem A, Noor A, Kabaria C, Manh B, Elyazar I, Brooker S, Smith D, Moyeed R, Snow R, , 2009. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6: e100048.[Crossref] [Google Scholar]
  18. Cohen J, Dlamini S, Novotny J, Kandula D, Kunene S, Tatem A, , 2013. Rapid case-based mapping of seasonal malaria transmission risk for strategic elimination planning in Swaziland. Malar J 12: 61.[Crossref] [Google Scholar]
  19. Noor A, Moloney G, Borle M, Fegan G, Shewchuk T, Snow R, , 2008. The use of mosquito nets and the prevalence of Plasmodium falciparum infection in rural south central Somalia. PLoS One 3: e2081.[Crossref] [Google Scholar]
  20. Rulisa S, Kateera F, Bizimana J, Agaba S, Dukuzumuremyi J, Baas L, Harelimana J, Mens P, Boer K, de Vries PJ, , 2012. Malaria prevalence, spatial clustering and risk factors in a low endemic area of eastern Rwanda: a cross sectional study. PLoS One 8: e69443.[Crossref] [Google Scholar]
  21. Magalhaes R, Langa A, Sousa-Figueiredo J, Clements A, Nery SV, , 2012. Finding malaria hot-spots in northern Angola: the role of individual, household and environmental factors within a meso-endemic area. Malar J 11: 385.[Crossref] [Google Scholar]
  22. Noor A, El Mardi K, Abdelgader T, Patil A, Amine A, Bakhier S, Mukhtar M, Snow R, , 2012. Malaria risk mapping for control in the Republic of Sudan. Am J Trop Med Hyg 87: 10121021.[Crossref] [Google Scholar]
  23. MOH, 2012. Zambia National Malaria Indicator Survey 2012. Lusaka, Zambia: Ministry of Health Government of the Republic of Zambia. [Google Scholar]
  24. Mukonka V, Chanda E, Haque U, Kamuliwo M, Mushinge G, Chileshe J, Chibwe K, Norris D, Mulenga M, Chaponda M, Muleba M, Glass G, Moss W, , 2014. High burden of malaria following scale-up of control interventions in Nchelenge district, Luapula province, Zambia. Malar J 13: 153.[Crossref] [Google Scholar]
  25. Lowther S, Curriero F, Shields T, Ahmed S, Monze M, Moss W, , 2009. Feasibility of satellite image-based sampling for a health survey among urban townships of Lusaka, Zambia. Trop Med Int Health 14: 778.[Crossref] [Google Scholar]
  26. Maidment D, Press E, , 2002. Arc Hydro: Gis for Water Resources. , ed. Redlands, CA: ESRI. [Google Scholar]
  27. Tarboton D, Bras R, Rodriguez-Iturbe I, , 1991. On the extraction of channel networks from digital elevation data. Hydrol Processes 5: 81100.[Crossref] [Google Scholar]
  28. Waller LA, Gotway CA, , 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: Wiley.[Crossref] [Google Scholar]
  29. R Core Team, 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical computing. [Google Scholar]
  30. Hahn D, Wanjala P, Marx M, , 2013. Where is information quality lost at clinical level? A mixed-method study on information systems and data quality in three urban Kenyan ANC clinics? Glob Health Action 6: 21424.[Crossref] [Google Scholar]
  31. Chandler C, Jones C, Boniface G, Juma K, Reyburn H, Whitty C, , 2008. Guidlines and mindlines: why do clinical staff over-diagnose malaria in Tanzania? A qualitative study. Malar J 7: 5366.[Crossref] [Google Scholar]
  32. Githinji S, Kigen S, Memusi D, Nyandigisi A, Wamari A, Muturi A, Jagoe G, Ziegler R, Snow R, Zurovac D, , 2014. Using mobile phone text messaging for malaria surveillance in rural Kenya. Malar J 13: 107116.[Crossref] [Google Scholar]
  33. Valle D, Lima JT, , 2014. Large-scale drivers of malaria and priority areas for prevention and control in the Brazilian amazon region using a novel multi-pathogen geospatial model. Malar J 13: 443457.[Crossref] [Google Scholar]
  34. Vittor A, Gilman R, Tielsch J, Glass G, Shields T, Lozano W, Pinedo-Cancino V, Patz J, , 2006. The effects of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian amazon. Am J Trop Med Hyg 74: 311. [Google Scholar]

Data & Media loading...

  • Received : 10 Apr 2015
  • Accepted : 30 Jun 2015
  • Published online : 09 Dec 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error