Volume 93, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue illness has been a major health concern in Pakistan during the last decade. Dengue infection can result in a spectrum of clinically distinct outcomes, ranging from asymptomatic infection to potentially life-threatening forms of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). A single-nucleotide polymorphism in FcγRIIa (rs1801274) results in altered affinity of the receptor for different subclasses of immunoglobulin G, and is a key player in determining the susceptibility to or protection from severe clinical infection of dengue. In this study, we analyzed the allelic and genotypic distribution of rs1801274 in subjects of Pakistani origin with subclinical dengue infection ( = 40), dengue fever (DF) ( = 40), and DHF/DSS ( = 30). We found that HH homozygotes and heterozygotes were significantly more likely to develop clinical dengue (odds ratio [OR] = 3.21, 95% confidence interval [CI] = 1.29–7.97, = 0.009), either DF (OR = 2.82, 95% CI = 1.00–7.97, = 0.045) or DHF/DSS (OR = 3.90, 95% CI = 1.13–13.07, = 0.024) than the asymptomatic dengue infection. Results of allelic distribution comparisons and logistic regression analysis also supported the same relationship. The results suggest complex nature of interacting factors in determining the course for severe dengue illness.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO/Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition. Available at: http://www.who.int/rpc/guidelines/9789241547871/en/. [Google Scholar]
  2. Rigau-Pérez JG, Clark GG, Gubler DJ, Reiter P, Sanders EJ, Vorndam AV, , 1998. Dengue and dengue haemorrhagic fever. Lancet 352: 971977. [Google Scholar]
  3. Halstead SB, Nimmannitya S, Cohen SN, , 1970. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med 42: 311328. [Google Scholar]
  4. Burke DS, Nisalak A, Johnson DE, Scott RM, , 1988. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg 38: 172180. [Google Scholar]
  5. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A, , 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 29. [Google Scholar]
  6. Reich NG, Shrestha S, King AA, Rohani P, Lessler J, Kalayanarooj S, Yoon I-K, Gibbons RV, Burke DS, Cummings DAT, , 2013. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J R Soc Interface 10: 20130414. [Google Scholar]
  7. Adams B, Holmes EC, Zhang C, Mammen MP, Nimmannitya S, Kalayanarooj S, Boots M, , 2006. Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci USA 103: 1423414239. [Google Scholar]
  8. Stephens Ha F, Klaythong R, Sirikong M, Vaughn DW, Green S, Kalayanarooj S, Endy TP, Libraty DH, Nisalak A, Innis BL, Rothman AL, Ennis FA, Chandanayingyong D, , 2002. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens 60: 309318. [Google Scholar]
  9. Martina BEE, Koraka P, Osterhaus ADME, , 2009. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22: 564581. [Google Scholar]
  10. Noecker CA, Amaya-Larios IY, Galeana-Hernández M, Ramos-Castañeda J, Martínez-Vega RA, , 2014. Contrasting associations of polymorphisms in FcγRIIa and DC-SIGN with the clinical presentation of dengue infection in a Mexican population. Acta Trop 138: 1522. [Google Scholar]
  11. García G, Sierra B, Pérez AB, Aguirre E, Rosado I, Gonzalez N, Izquierdo A, Pupo M, Danay Díaz DR, Sánchez L, Marcheco B, Hirayama K, Guzmán MG, , 2010. Asymptomatic dengue infection in a Cuban population confirms the protective role of the RR variant of the FcγRIIa polymorphism. Am J Trop Med Hyg 82: 11531156. [Google Scholar]
  12. Lan NTP, Kikuchi M, Huong VTQ, Ha DQ, Thuy TT, Tham VD, Tuan HM, Tuong VV, Nga CTP, Van Dat T, Oyama T, Morita K, Yasunami M, Hirayama K, , 2008. Protective and enhancing HLA alleles, HLA-DRB1*0901 and HLA-A*24, for severe forms of dengue virus infection, dengue hemorrhagic fever and dengue shock syndrome. PLoS Negl Trop Dis 2: e304. [Google Scholar]
  13. Coffey LL, Mertens E, Brehin A-C, Fernandez-Garcia MD, Amara A, Després P, Sakuntabhai A, , 2009. Human genetic determinants of dengue virus susceptibility. Microbes Infect 11: 143156. [Google Scholar]
  14. Vejbaesya S, Luangtrakool P, Luangtrakool K, Kalayanarooj S, Vaughn DW, Endy TP, Mammen MP, Green S, Libraty DH, Ennis FA, Rothman AL, Stephens HAF, , 2009. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) gene, allele, and extended HLA haplotype associations with severe dengue virus infection in ethnic Thais. J Infect Dis 199: 14421448. [Google Scholar]
  15. Acioli-Santos B, Segat L, Dhalia R, Brito CAA, Braga-Neto UM, Marques ETA, Crovella S, , 2008. MBL2 gene polymorphisms protect against development of thrombocytopenia associated with severe dengue phenotype. Hum Immunol 69: 122128. [Google Scholar]
  16. Fernández-Mestre MT, Gendzekhadze K, Rivas-Vetencourt P, Layrisse Z, , 2004. TNF-α-308A allele, a possible severity risk factor of hemorrhagic manifestation in dengue fever patients. Tissue Antigens 64: 469472. [Google Scholar]
  17. Chuansumrit A, Anantasit N, Sasanakul W, Chaiyaratana W, Tangnararatchakit K, Butthep P, Chunhakan S, Yoksan S, , 2013. Tumour necrosis factor gene polymorphism in dengue infection: association with risk of bleeding. Paediatr Int Child Health 33: 97101. [Google Scholar]
  18. Loke H, Bethell D, Phuong CXT, Day N, White N, Farrar J, Hill A, , 2002. Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg 67: 102106. [Google Scholar]
  19. Khor CC, Chau TNB, Pang J, Davila S, Long HT, Ong RTH, Dunstan SJ, Wills B, Farrar J, Van Tram T, Gan TT, Binh NTN, Tri LT, Lien LB, Tuan NM, Tham NTH, Lanh MN, Nguyet NM, Hieu NT, Van N, Vinh Chau N, Thuy TT, Tan DEK, Sakuntabhai A, Teo Y-Y, Hibberd ML, Simmons CP, , 2011. Genome-wide association study identifies susceptibility loci for dengue shock syndrome at MICB and PLCE1. Nat Genet 43: 11391141. [Google Scholar]
  20. van de Winkel JGJ, Capel PJA, , 1993. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol Today 14: 215221. [Google Scholar]
  21. Clark MR, Stuart SG, Kimberly RP, Ory PA, Goldstein IM, , 1991. A single amino acid distinguishes the high-responder from the low-responder form of Fc receptor II on human monocytes. Eur J Immunol 21: 19111916. [Google Scholar]
  22. Warmerdam PA, van de Winkel JG, Vlug A, Westerdaal NA, Capel PJ, , 1991. A single amino acid in the second Ig-like domain of the human Fc gamma receptor II is critical for human IgG2 binding. J Immunol 147: 13381343. [Google Scholar]
  23. Chan YC, Salahuddin NI, Khan J, Tan HC, Seah CL, Li J, Chow VT, , 1995. Dengue haemorrhagic fever outbreak in Karachi, Pakistan, 1994. Trans R Soc Trop Med Hyg 89: 619620. [Google Scholar]
  24. Tang JW, Khanani MR, Zubairi AM, Lam WY, Lai F, Hashmi K, Hussain A, Jamal S, Chan PKS, , 2008. A wide spectrum of dengue IgM and PCR positivity post-onset of illness found in a large dengue 3 outbreak in Pakistan. J Med Virol 80: 21132121. [Google Scholar]
  25. Khan E, Hasan R, Mehraj V, Nasir A, Siddiqui J, Hewson R, , 2008. Co-circulations of two genotypes of dengue virus in 2006 out-break of dengue hemorrhagic fever in Karachi, Pakistan. J Clin Virol 43: 176179. [Google Scholar]
  26. Dash PK, Parida MM, Saxena P, Abhyankar A, Singh CP, Tewari KN, Jana AM, Sekhar K, Rao PVL, , 2006. Reemergence of dengue virus type-3 (subtype-III) in India: implications for increased incidence of DHF and DSS. Virol J 3: 55. [Google Scholar]
  27. Humayoun MA, Waseem T, Jawa AA, Hashmi MS, Akram J, , 2010. Multiple dengue serotypes and high frequency of dengue hemorrhagic fever at two tertiary care hospitals in Lahore during the 2008 dengue virus outbreak in Punjab, Pakistan. Int J Infect Dis 14 (Suppl 3): e54e59. [Google Scholar]
  28. Mahmood N, Rana MY, Qureshi Z, Mujtaba G, Shaukat U, , 2012. Prevalence and molecular characterization of dengue viruses serotypes in 2010 epidemic. Am J Med Sci 343: 6164. [Google Scholar]
  29. Rasheed SB, Butlin RK, Boots M, , 2013. A review of dengue as an emerging disease in Pakistan. Public Health 127: 1117. [Google Scholar]
  30. Fatima Z, Afzal S, Idrees M, Rafique S, Akram M, Khubaib B, Saleem S, Amin I, Shahid M, , 2013. Change in demographic pattern of dengue virus infection: evidence from 2011 dengue outbreak in Punjab, Pakistan. Public Health 127: 875877. [Google Scholar]
  31. Bazilio AP, Viana VST, Toledo R, Woronik V, Bonfá E, Monteiro RC, , 2004. Fc gamma RIIa polymorphism: a susceptibility factor for immune complex-mediated lupus nephritis in Brazilian patients. Nephrol Dial Transplant 19: 14271431. [Google Scholar]
  32. Koraka P, Suharti C, Setiati TE, Mairuhu AT, Van Gorp E, Hack CE, Juffrie M, Sutaryo J, Van Der Meer GM, Groen J, Osterhaus AD, , 2001. Kinetics of dengue virus-specific serum immunoglobulin classes and subclasses correlate with clinical outcome of infection. J Clin Microbiol 39: 43324338. [Google Scholar]
  33. van Sorge NM, van der Pol WL, van de Winkel JGJ, , 2003. FcgammaR polymorphisms: implications for function, disease susceptibility and immunotherapy. Tissue Antigens 61: 189202. [Google Scholar]
  34. Moi ML, Lim C-K, Takasaki T, Kurane I, , 2010. Involvement of the Fcγ receptor IIA cytoplasmic domain in antibody-dependent enhancement of dengue virus infection. J Gen Virol 91: 103111. [Google Scholar]
  35. Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, Daëron M, , 2009. Specificity and affinity of human Fc gamma receptors and their polymorphic variants for human IgG subclasses. Blood 113: 37163725. [Google Scholar]
  36. García-García E, Rosales C, , 2002. Signal transduction during Fc receptor-mediated phagocytosis. J Leukoc Biol 72: 10921108. [Google Scholar]
  37. Osborne JM, Chacko GW, Brandt JT, Anderson CL, , 1994. Ethnic variation in frequency of an allelic polymorphism of human Fc gamma RIIA determined with allele specific oligonucleotide probes. J Immunol Methods 173: 207217. [Google Scholar]
  38. Kuwano ST, Bordin JO, Chiba AK, Mello AB, Figueiredo MS, Vieira-Filho JP, Fabron A, Kerbauy J, , 2000. Allelic polymorphisms of human Fc gamma receptor IIa and Fc gamma receptor IIIb among distinct groups in Brazil. Transfusion 40: 13881392. [Google Scholar]
  39. Bredius RG, Derkx BH, Fijen CA, de Wit TP, de Haas M, Weening RS, van de Winkel JG, Out TA, , 1994. Fc gamma receptor IIa (CD32) polymorphism in fulminant meningococcal septic shock in children. J Infect Dis 170: 848853. [Google Scholar]
  40. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, Guzmán MG, , 2010. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82: 128135. [Google Scholar]

Data & Media loading...

  • Received : 14 Mar 2015
  • Accepted : 17 Jun 2015
  • Published online : 07 Oct 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error