Volume 94, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



(Hemiptera: Reduviidae) is a secondary vector of in Colombia and represents an important epidemiological risk mainly in the central and oriental regions of the country where it occupies sylvatic, peridomestic, and intradomestic ecotopes, and because of this complex distribution, its distribution and abundance could be conditioned by environmental factors. In this work, we explored the relationship between distribution and environmental factors in the northwest, northeast, and central zones of Colombia and developed predictive models of infestation in the country. The associations between the presence of and environmental variables were studied using logistic regression models and ecological niche modeling for a sample of villages in Colombia. The analysis was based on the information collected in field about the presence of and the environmental data for each village extracted from remote sensing images. The presence of (Latreille, 1811) was found to be significantly associated with the maximum vegetation index, minimum land surface temperature (LST), and the digital elevation for the statistical model. Temperature seasonality, annual precipitation, and vegetation index were the variables that most influenced the ecological niche model of distribution. The logistic regression model showed a good fit and predicted suitable habitats in the Andean and Caribbean regions, which agrees with the known distribution of the species, but predicted suitable habitats in the Pacific and Orinoco regions proposing new areas of research. Improved models to predict suitable habitats for hold promise for spatial targeting of integrated vector management.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Ramírez CJ, Jaramillo CA, Delgado M, Pinto N, Aguilera G, Guhl F, , 2005. Genetic structure of sylvatic, peridomestic and domestic populations of Triatoma dimidiata (Hemiptera: Reduviidae) from an endemic zone of Boyacá, Colombia. Acta Trop 93: 2329.[Crossref] [Google Scholar]
  2. World Health Organization, 2002. Control of Chagas Disease. Technical report series 905. 1–07. Geneva, Switzerland: WHO. [Google Scholar]
  3. Parra-Henao G, Segura Á, Quirós-Gómez O, Angulo V, Alexander N, , 2005. House-level risk factors for Triatoma dimidiata infestation in Colombia. Am J Trop Med Hyg 92: 193200.[Crossref] [Google Scholar]
  4. WHO, 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Epidemiol Rec Health Sect Secr Leag Nations 90: 3343. [Google Scholar]
  5. Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, Ponce C, Salazar-Schettino PM, Panzarea F, Abad-Franch F, Sousa OE, Schofield CJ, Dujardin JP, Guhl F, Mas-Coma S, , 2008. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma . PLoS Negl Trop Dis 2: e233.[Crossref] [Google Scholar]
  6. Dorn PL, Monroy C, Curtis A, , 2007. Triatoma dimidiata (Latreille, 1811): a review of its diversity across its geographic range and the relationship among populations. Infect Genet Evol 7: 343352.[Crossref] [Google Scholar]
  7. Petana WB, , 1971. American trypanosomiasis in British honduras. X. Natural habitats and ecology of Triatoma dimidiata (Hemiptera, Reduviidae) in the El Cayo and Toledo districts, and the prevalence of infection with Trypanosoma (Schizotrypanum) cruzi in the wild-caught bugs. Ann Trop Med Parasitol 65: 169178.[Crossref] [Google Scholar]
  8. Zeledon R, Rabinovich JE, , 1981. Chagas disease: an ecological appraisal with special emphasis on its insect vectors. Annu Rev Entomol 26: 101133.[Crossref] [Google Scholar]
  9. Monroy MC, Bustamante DM, Rodas AG, Enriquez ME, Rosales RG, , 2003. Habitats, dispersion and invasion of sylvatic Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in Petén, Guatemala. J Med Entomol 40: 800806.[Crossref] [Google Scholar]
  10. Parra-Henao G, Angulo V, Jaramillo N, Restrepo M, , 2009. Factores de riesgo de infestación domiciliaria por Triatoma dimidiata . Biomedica 13 (Suppl 1): 316. [Google Scholar]
  11. Parra-Henao G, Angulo V, Jaramillo N, Restrepo M, , 2010. Triatominos (Hemiptera: Reduviidae) de la Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. CES Med 23: 1726. [Google Scholar]
  12. Parra-Henao G, Restrepo M, Restrepo B, Dominguez J, , 2004. Estudio de tripanosomiasis americana en dos poblados indígenas de la Sierra Nevada de Santa Marta. CES Med 18: 4350. [Google Scholar]
  13. Bustamante DM, Monroy MC, Rodas AG, Juarez JA, Malone JB, , 2007. Environmental determinants of the distribution of Chagas disease vectors in south-eastern Guatemala. Geospat Health 1: 199211.[Crossref] [Google Scholar]
  14. Dumonteil E, Gourbiére S, , 2004. Predicting Triatoma dimidiata abundance and infection rate: a risk map for natural transmission of Chagas disease in the Yucatan peninsula of Mexico. Am J Trop Med Hyg 70: 514519. [Google Scholar]
  15. Carcavallo RU, , 1999. Climatic factors related to Chagas disease transmission. Mem Inst Oswaldo Cruz 94 (Suppl 1): 367369.[Crossref] [Google Scholar]
  16. Lillesand TM, Kiefer RW, , 1994. Remote Sensing and Image Interpretation, 3rd edition. Toronto, Canada: John Wiley and Sons, 750. [Google Scholar]
  17. Beck LR, Lobitz BM, Wood BL, , 2000. Remote sensing and human health: new sensors and new opportunities. Emerg Infect Dis 6: 217227.[Crossref] [Google Scholar]
  18. Kitron U, , 2000. Risk maps: transmission and burden of vector-borne diseases. Parasitol Today 16: 324325.[Crossref] [Google Scholar]
  19. Thomson MC, Connor SJ, , 2000. Environmental information systems for the control of arthropod vectors of disease. Med Vet Entomol 14: 227244.[Crossref] [Google Scholar]
  20. Gorla DE, , 2002. Remotely sensed environmental variables as indicators of Triatoma infestans (Heteroptera: Reduviidae) distribution. Ecol Austral 12: 117127. [Google Scholar]
  21. Costa J, Peterson AT, Beard CB, , 2002. Ecologic niche modeling and differentiation of populations of Triatoma brasiliensis neiva, 1911, the most important Chagas' disease vector in northeastern Brazil (hemiptera, reduviidae, triatominae). Am J Trop Med Hyg 67: 516520. [Google Scholar]
  22. Peterson AT, Sánchez-Cordero V, Beard CB, Ramsey JM, , 2002. Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerg Infect Dis 8: 662667.[Crossref] [Google Scholar]
  23. Beard CB, Pye G, Steurer F, Rodriguez R, Campman R, Peterson A, Ramsey J, Wirtz R, Robinson L, , 2003. Chagas disease in a domestic transmission cycle in southern Texas, USA. Emerg Infect Dis 9: 103105.[Crossref] [Google Scholar]
  24. Sandoval-Ruiz CA, Zumaquero-Rios JL, Rojas-Soto OR, , 2008. Predicting geographic and ecological distributions of triatomine species in the southern Mexican state of Puebla using ecological niche modeling. J Med Entomol 45: 540546.[Crossref] [Google Scholar]
  25. Gurgel-Goncalves R, Cuba CA, , 2009. Predicting the potential geographical distribution of Rhodnius neglectus (Hemiptera, Reduviidae) based on ecological niche modeling. J Med Entomol 46: 952960.[Crossref] [Google Scholar]
  26. Gurgel-Gonçalves R, Silva R, , 2009. Analysis of the geographical distribution of Psammolestes Bergroth (Heteroptera: Reduviidae) in South America with new records of Psammolestes tertius Lent & Jurberg. Zootaxa 2033: 4148. [Google Scholar]
  27. Arboleda S, Gorla DE, Porcasi X, Saldaña A, Calzada J, Jaramillo ON, , 2009. Development of a geographical distribution model of Rhodnius pallescens Barber, 1932 using environmental data recorded by remote sensing. Infect Genet Evol 9: 441448.[Crossref] [Google Scholar]
  28. Ibarra-Cerdeña CN, Sánchez-Cordero V, Townsend Peterson A, Ramsey JM, , 2009. Ecology of North American triatominae. Acta Trop 110: 178186.[Crossref] [Google Scholar]
  29. Gurgel-Gonçalves R, Galvão C, Costa J, Peterson AT, , 2012. Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling. J Trop Med 2012: e705326.[Crossref] [Google Scholar]
  30. Tabaru Y, Monroy C, Rodas A, Mejia M, Rosales R, , 1999. The geographical distribution of vectors of Chagas disease and population at risk of infestation in Guatemala. Med Entomol Zool 50: 917.[Crossref] [Google Scholar]
  31. Starr MD, Rojas JC, Zeledón R, Hird DW, Carpenter TE, , 1991. Chagas' disease: risk factors for house infestation by Triatoma dimidiata, the major vector of Trypanosoma cruzi in Costa Rica. Am J Epidemiol 133: 740747.[Crossref] [Google Scholar]
  32. Landis JR, Koch GG, , 1977. The measurement of observer agreement for categorical data. Biometrics 33: 159174.[Crossref] [Google Scholar]
  33. King RJ, Campbell-Lendrum DH, Davies CR, , 2004. Predicting geographic variation in cutaneous leishmaniasis, Colombia. Emerg Infect Dis 10: 598607.[Crossref] [Google Scholar]
  34. Fielding AH, Bell JF, , 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 3849.[Crossref] [Google Scholar]
  35. Pearce JL, Ferrier S, , 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Modell 133: 225245.[Crossref] [Google Scholar]
  36. Brooker S, Hay S, Tchuem Tchuenté L, Ratard R, , 2002. Using NOAA-AVHRR data to model human helminth distributions in planning disease control in Cameroon, west Africa. Photogramm Eng Remote Sensing 68: 175179. [Google Scholar]
  37. Rogers DJ, , 2006. Models for vectors and vector-borne diseases. Adv Parasitol 62: 135.[Crossref] [Google Scholar]
  38. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A, , 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 19651978.[Crossref] [Google Scholar]
  39. Phillips SJ, Anderson RP, Schapire RE, , 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell 190: 231259.[Crossref] [Google Scholar]
  40. Anderson RP, Gómez-Laverde M, Peterson AT, , 2002. Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11: 131141.[Crossref] [Google Scholar]
  41. Pearson R, Raxworthy C, Nakamamura M, Peterson A, , 2006. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34: 102117.[Crossref] [Google Scholar]
  42. King RJ, Cordon-Rosales C, Cox J, Davies CR, Kitron UD, , 2011. Triatoma dimidiata infestation in Chagas disease endemic regions of Guatemala: comparison of random and targeted cross-sectional surveys. PLoS Negl Trop Dis 5: e1035.[Crossref] [Google Scholar]
  43. Carbajal de la Fuente AL, Porcasi X, Noireau F, Diotaiuti L, Gorla DE, , 2009. The association between the geographic distribution of Triatoma pseudomaculata and Triatoma wygodzinskyi (Hemiptera: Reduviidae) with environmental variables recorded by remote sensors. Infect Genet Evol 9: 5461.[Crossref] [Google Scholar]
  44. Grisales N, Triana O, Angulo V, Jaramillo N, Parra-Henao G, Panzaera F, Gómez-Palacio A, , 2010. Genetic differentiation of three Colombian populations of Triatoma dimidiata (Heteroptera: Reduviidae) by ND4 mitochondrial gene molecular analysis. Biomedica 30: 207214.[Crossref] [Google Scholar]
  45. Cross ER, Newcomb WW, Tucker CJ, , 1996. Use of weather data and remote sensing to predict the geographic and seasonal distribution of Phlebotomus papatasi in southwest Asia. Am J Trop Med Hyg 54: 530536. [Google Scholar]
  46. Thomson MC, Connor SJ, D'Alessandro U, Rowlingson B, Diggle P, Creewell M, Greenwood B, , 1999. Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. Am J Trop Med Hyg 61: 28. [Google Scholar]
  47. Guerra CA, Snow RW, Hay SI, , 2006. Defining the global spatial limits of malaria transmission in 2005. Adv Parasitol 62: 157179.[Crossref] [Google Scholar]
  48. Cox J, Craig M, Le Seur D, Sharp B, , 1999. Mapping malaria risk in the highlands of Africa. (MARA/HIMA, 1999). [Google Scholar]
  49. Carcavallo R, Curto de Casas S, Gálindez-Girón I, Jurberg J, Mena-Segura C, , 1995. Geographical distribution and alti-latitudinal dispersion of genera and species of the tribes Alberproseniini, Bolboderini and Cavernicolini (Hemiptera, Reduviidae, Triatominae). Entomol Vectores 2: 127144. [Google Scholar]
  50. Curto de Casas S, Carcavallo R, Gálindez-Girón I, Jurberg J, Mena-Segura C, , 1996. Geographical distribution and alti-latitudinal dispersion of species of Panstrongylus (Hemiptera, Reduviidae, Triatominae, Triatomini). Entomol Vectores 3: 4358. [Google Scholar]
  51. Jurberg J, Galvao C, Galíndez-Girón I, Carcavallo RU, Mena Segura CA, Curto de Casas SI, , 1996. Distribución geográfica y dispersión alti-latitudinal de las especies del género Triatoma Laporte, 1832 de Norte América, América Central y el Caribe. Entomol Vectores 3: 87117. [Google Scholar]
  52. Galvão C, Jurberg J, Carcavallo RU, Segura CA, Galíndez-Girón I, Curto de Casas SI, , 1998. Geographical distribution and alti-latitudinal dispersion of some genera and species of the tribe Triatomini Jeannel, 1919 (Hemiptera, Reduviidae, Triatominae). Mem Inst Oswaldo Cruz 93: 3337.[Crossref] [Google Scholar]
  53. Ramsey JM, Ordoñez R, Cruz-Celis A, Alvear AL, Chavez V, Lopez R, Pintor JR, Gama F, Carrillo S, , 2000. Distribution of domestic triatominae and stratification of Chagas disease transmission in Oaxaca, Mexico. Med Vet Entomol 14: 1930.[Crossref] [Google Scholar]
  54. Parra-Henao G, Florez Martinez M, Angulo Silva V, , 2015. Vigilancia de Triatominae (Hemiptera: Reduviidae) en Colombia. Bogotá, Colombia: Sic Editorial Ltda. [Google Scholar]

Data & Media loading...

  • Received : 12 Mar 2015
  • Accepted : 24 Dec 2015
  • Published online : 06 Apr 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error