Volume 93, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The resilience of , the causative agent of melioidosis, was evaluated in control soil microcosms and in soil microcosms containing NaCl or FeSO at 30°C. Iron (Fe(II)) promoted the growth of during the 30-day observation, contrary to the presence of 1.5% and 3% NaCl. Scanning electron micrographs of in soil revealed their morphological alteration from rod to coccoid and the formation of microcolonies. The smallest cells were found in soil with 100 μM FeSO compared with in the control soil or soil with 0.6% NaCl ( < 0.05). The colony count on Ashdown's agar and bacterial viability assay using the LIVE/DEAD Light stain combined with flow cytometry showed that remained culturable and viable in the control soil microcosms for at least 120 days. In contrast, soil with 1.5% NaCl affected their culturability at day 90 and their viability at day 120. Our results suggested that a low salinity and iron may influence the survival of and its ability to change from a rod-like to coccoid form. The morphological changes of cells may be advantageous for their persistence in the environment and may increase the risk of their transmission to humans.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. White NJ, , 2003. Melioidosis. Lancet 361: 17151722.[Crossref] [Google Scholar]
  2. Cheng AC, Currie BJ, , 2005. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 18: 383416.[Crossref] [Google Scholar]
  3. Wiersinga WJ, Currie BJ, Peacock SJ, , 2012. Melioidosis. N Engl J Med 367: 10351044.[Crossref] [Google Scholar]
  4. Dance DA, Smith MD, Aucken HM, Pitt TL, , 1999. Imported melioidosis in England and Wales. Lancet 353: 208.[Crossref] [Google Scholar]
  5. Visca P, Cazzola G, Petrucca A, Braggion C, , 2001. Travel-associated Burkholderia pseudomallei infection (melioidosis) in a patient with cystic fibrosis: a case report. Clin Infect Dis 32: E15E16.[Crossref] [Google Scholar]
  6. Rossi B, Epelboin L, Jaureguiberry S, Lecso M, Roos-Weil D, Gabarre J, Grenier PA, Bricaire F, Caumes E, , 2013. Melioidosis and hairy cell leukemia in 2 travelers returning from Thailand. Emerg Infect Dis 19: 503505.[Crossref] [Google Scholar]
  7. Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N, Wongsuvan G, Chaisuksant S, Chetchotisakd P, Chaowagul W, Day NP, Peacock SJ, , 2010. Increasing incidence of human melioidosis in northeast Thailand. Am J Trop Med Hyg 82: 11131117.[Crossref] [Google Scholar]
  8. Chen YL, Yen YC, Yang CY, Lee MS, Ho CK, Mena KD, Wang PY, Chen PS, , 2014. The concentrations of ambient Burkholderia pseudomallei during typhoon season in endemic area of melioidosis in Taiwan. PLoS Negl Trop Dis 8: e2877.[Crossref] [Google Scholar]
  9. Currie BJ, Jacups SP, , 2003. Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis 9: 15381542.[Crossref] [Google Scholar]
  10. Meumann EM, Cheng AC, Ward L, Currie BJ, , 2012. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 54: 362369.[Crossref] [Google Scholar]
  11. Chen YS, Chen SC, Kao CM, Chen YL, , 2003. Effects of soil pH, temperature and water content on the growth of Burkholderia pseudomallei . Folia Microbiol (Praha) 48: 253256.[Crossref] [Google Scholar]
  12. Inglis TJ, Sagripanti JL, , 2006. Environmental factors that affect the survival and persistence of Burkholderia pseudomallei . Appl Environ Microbiol 72: 68656875.[Crossref] [Google Scholar]
  13. Thomas AD, Forbes-Faulkner JC, , 1981. Persistence of Pseudomonas pseudomallei in soil. Aust Vet J 57: 535536.[Crossref] [Google Scholar]
  14. Pumpuang A, Chantratita N, Wikraiphat C, Saiprom N, Day NP, Peacock SJ, Wuthiekanun V, , 2011. Survival of Burkholderia pseudomallei in distilled water for 16 years. Trans R Soc Trop Med Hyg 105: 598600.[Crossref] [Google Scholar]
  15. Tong S, Yang S, Lu Z, He W, , 1996. Laboratory investigation of ecological factors influencing the environmental presence of Burkholderia pseudomallei . Microbiol Immunol 40: 451453.[Crossref] [Google Scholar]
  16. Wang-Ngarm S, Chareonsudjai S, Chareonsudjai P, , 2014. Physicochemical factors affecting the growth of Burkholderia pseudomallei in soil microcosm. Am J Trop Med Hyg 90: 480485.[Crossref] [Google Scholar]
  17. Larsen E, Smith JJ, Norton R, Corkeron M, , 2013. Survival, sublethal injury, and recovery of environmental Burkholderia pseudomallei in soil subjected to desiccation. Appl Environ Microbiol 79: 24242427.[Crossref] [Google Scholar]
  18. Draper AD, Mayo M, Harrington G, Karp D, Yinfoo D, Ward L, Haslem A, Currie BJ, Kaestli M, , 2010. Association of the melioidosis agent Burkholderia pseudomallei with water parameters in rural water supplies in northern Australia. Appl Environ Microbiol 76: 53055307.[Crossref] [Google Scholar]
  19. Kaestli M, Mayo M, Harrington G, Watt F, Hill J, Gal D, Currie BJ, , 2007. Sensitive and specific molecular detection of Burkholderia pseudomallei, the causative agent of melioidosis, in the soil of tropical northern Australia. Appl Environ Microbiol 73: 68916897.[Crossref] [Google Scholar]
  20. Kamjumphol W, Chareonsudjai S, Chareonsudjai P, Wongratanacheewin S, Taweechaisupapong S, , 2013. Environmental factors affecting Burkholderia pseudomallei biofilm formation. Southeast Asian J Trop Med Public Health 44: 7281. [Google Scholar]
  21. Pumirat P, Cuccui J, Stabler RA, Stevens JM, Muangsombut V, Singsuksawat E, Stevens MP, Wren BW, Korbsrisate S, , 2010. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol 10: 171.[Crossref] [Google Scholar]
  22. Suebrasri T, Wang-ngarm S, Chareonsudjai P, Sermswan RW, Chareonsudjai S, , 2013. Seasonal variation of soil environmental characteristics affect the presence of Burkholderia pseudomallei in Khon Kaen, Thailand. Afr J Microbiol Res 7: 19401945.[Crossref] [Google Scholar]
  23. Chen S-Y, Jane W-N, Chen Y-S, Wong H-C, , 2009. Morphological changes of Vibrio parahaemolyticus under cold and starvation stresses. Int J Food Microbiol 129: 157165.[Crossref] [Google Scholar]
  24. Adams BL, Bates TC, Oliver JD, , 2003. Survival of Helicobacter pylori in a natural freshwater environment. Appl Environ Microbiol 69: 74627466.[Crossref] [Google Scholar]
  25. Robertson J, Levy A, Sagripanti JL, Inglis TJ, , 2010. The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg 82: 8894.[Crossref] [Google Scholar]
  26. Sermswan RW, Wongratanacheewin S, Trakulsomboon S, Thamlikitkul V, , 2001. Ribotyping of Burkholderia pseudomallei from clinical and soil isolates in Thailand. Acta Trop 80: 237244.[Crossref] [Google Scholar]
  27. Taweechaisupapong S, Kaewpa C, Arunyanart C, Kanla P, Homchampa P, Sirisinha S, Proungvitaya T, Wongratanacheewin S, , 2005. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb Pathog 39: 7785.[Crossref] [Google Scholar]
  28. Trung TT, Hetzer A, Topfstedt E, Gohler A, Limmathurotsakul D, Wuthiekanun V, Peacock SJ, Steinmetz I, , 2011. Improved culture-based detection and quantification of Burkholderia pseudomallei from soil. Trans R Soc Trop Med Hyg 105: 346351.[Crossref] [Google Scholar]
  29. Sachidanandham R, Gin KY-H, , 2009. A dormancy state in nonspore-forming bacteria. Appl Microbiol Biotechnol 81: 927941.[Crossref] [Google Scholar]
  30. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R, , 1999. LIVE/DEAD® BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J Microbiol Methods 37: 7786.[Crossref] [Google Scholar]
  31. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T, , 2007. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73: 32833290.[Crossref] [Google Scholar]
  32. Palasatien S, Lertsirivorakul R, Royros P, Wongratanacheewin S, Sermswan RW, , 2008. Soil physicochemical properties related to the presence of Burkholderia pseudomallei. Trans R Soc Trop Med Hyg 102 (Suppl 1): S5S9.[Crossref] [Google Scholar]
  33. Kaestli M, Mayo M, Harrington G, Ward L, Watt F, Hill JV, Cheng AC, Currie BJ, , 2009. Landscape changes influence the occurrence of the melioidosis bacterium Burkholderia pseudomallei in soil in northern Australia. PLoS Negl Trop Dis 3: e364.[Crossref] [Google Scholar]
  34. Thanachit S, Suddhiprakarn A, Kheoruenromne I, Sindhusen P, Gilkes R, , 2010. Micromorphological characteristic of soils on the Nam Phong and Khon Buri catenae, northeast Thailand. Thai Journal of Agricultural Science 43: 7190. [Google Scholar]
  35. Weber KA, Achenbach LA, Coates JD, , 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4: 752764.[Crossref] [Google Scholar]
  36. Meneghini R, , 1997. Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 23: 783792.[Crossref] [Google Scholar]
  37. Touati DL, , 2000. Iron and oxidative stress in bacteria. Arch Biochem Biophys 373: 16.[Crossref] [Google Scholar]
  38. Sagripanti JL, Carrera M, Robertson J, Levy A, Inglis TJ, , 2011. Size distribution and buoyant density of Burkholderia pseudomallei . Arch Microbiol 193: 6975.[Crossref] [Google Scholar]
  39. Baker RM, Singleton FL, Hood MA, , 1983. Effects of nutrient deprivation on Vibrio cholerae . Appl Environ Microbiol 46: 930940. [Google Scholar]
  40. Erlebach CE, Illmer P, Schinner F, , 2000. Changes of cell size distribution during the batch culture of Arthrobacter strain PI/1-95. Antonie van Leeuwenhoek 77: 329335.[Crossref] [Google Scholar]
  41. Thomas RJ, Davies C, Nunez A, Hibbs S, Eastaugh L, Harding S, Jordan J, Barnes K, Oyston P, Eley S, , 2012. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis. Front Cell Infect Microbiol 2: 101.[Crossref] [Google Scholar]
  42. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP, , 2014. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5: 258. [Google Scholar]
  43. Oliver JD, , 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34: 415425.[Crossref] [Google Scholar]
  44. Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, El-Registan GI, Kaprelyants AS, , 2009. Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiology 155: 10711079.[Crossref] [Google Scholar]
  45. Weichart D, Kjelleberg S, , 1996. Stress resistance and recovery potential of culturable and viable but nonculturable cells of Vibrio vulnificus . Microbiology 142: 845853.[Crossref] [Google Scholar]
  46. Wong HC, Wang P, , 2004. Induction of viable but nonculturable state in Vibrio parahaemolyticus and its susceptibility to environmental stresses. J Appl Microbiol 96: 359366.[Crossref] [Google Scholar]
  47. Chen YS, Shieh WJ, Goldsmith CS, Metcalfe MG, Greer PW, Zaki SR, Chang HH, Chan H, Chen YL, , 2014. Alteration of the phenotypic and pathogenic patterns of Burkholderia pseudomallei that persist in a soil environment. Am J Trop Med Hyg 90: 469479.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 04 Mar 2015
  • Accepted : 22 Jul 2015
  • Published online : 04 Nov 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error