1921
Volume 93, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Viruses in the genus (family ) include many arthropod-borne viruses of public health and veterinary importance. However, during the past two decades an explosion of novel insect-specific flaviviruses (ISFs), some closely related to vertebrate pathogens, have been discovered. Although many flavivirus pathogens of vertebrates have been isolated from naturally infected mosquitoes in Panama, ISFs have not previously been reported from the country. This report describes the isolation and characterization of a novel ISF, tentatively named Mercadeo virus (MECDV), obtained from spp. mosquitoes collected in Panama. Two MECDV isolates were sequenced and cluster phylogenetically with cell-fusing agent virus (CFAV) and Nakiwogo virus (NAKV) to form a distinct lineage within the insect-specific group of flaviviruses.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0117
2015-11-04
2018-12-15
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/5/1014.html?itemId=/content/journals/10.4269/ajtmh.15-0117&mimeType=html&fmt=ahah

References

  1. Gubler DJ, Kuno G, Markoff L, Knipe DM, Howley PM, , 2007. Flaviviruses. Fields Virology, 5th edition. , eds. Philadelphia, PA: Walters Kluwer/Lippincott Williams and Wilkins, 11531252. [Google Scholar]
  2. Kuno G, , 2004. A survey of the relationships among the viruses not considered arboviruses, vertebrates and arthropods. Acta Virol 48: 135143. [Google Scholar]
  3. Kuno G, , 2007. Host range specificity of flaviviruses: correlation with in vitro replication. J Med Entomol 44: 93101.[Crossref] [Google Scholar]
  4. Stollar V, Thomas VL, , 1975. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64: 367377.[Crossref] [Google Scholar]
  5. Igarashi A, Harrap KA, Casals J, Stollar V, , 1976. Morphological, biochemical, and serological studies on a viral agent (CFA) which replicates in and causes fusion of Aedes albopictus (Singh) cells. Virology 74: 174187.[Crossref] [Google Scholar]
  6. Cook S, Moureau G, Kitchen A, Could EA, de Lamballerie X, Holmes EC, Harbach RE, , 2012. Molecular evolution of the insect-specific flaviviruses. J Gen Virol 93: 223234.[Crossref] [Google Scholar]
  7. Juglen S, Drosten C, , 2013. Virus discovery and recent insights into virus diversity in arthropods. Curr Opin Microbiol 16: 17.[Crossref] [Google Scholar]
  8. Hobson-Peters J, Yam AWY, Lu JWF, Seteh YX, May FJ, Kurucz N, Walsh S, Prow NA, Davis SS, Weir R, Melville L, Hunt N, Webb RI, Blitvich BJ, Whenlan P, Hall RA, , 2013. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS One 8: e56534.[Crossref] [Google Scholar]
  9. Haddow AD, Guzman H, Popov VL, Wood TG, Widen S, Tesh RB, Weaver SC, , 2013. Isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology 440: 134139.[Crossref] [Google Scholar]
  10. Carrera JP, Forrester N, Wang E, Vittor AY, Haddow AD, Lopez-Verges S, Abadia I, Castano E, Sosa N, Baez C, Estripeaut D, Diaz Y, Beltran D, Cisneros J, Cedeno HG, Travassos da Rosa AP, Hernandez H, Martinez-Torres AO, Tesh RB, Weaver SC, , 2013. Eastern equine encephalitis in Latin America. N Engl J Med 369: 732744.[Crossref] [Google Scholar]
  11. Holdridge LR, Dudowski G, , 1956. Report on an ecological survey of the republic of Panama. Caribb Forest 17: 92110. [Google Scholar]
  12. Service MW, , 1993. Sampling adults with carbon dioxide traps, light traps, visual attraction traps and sound traps. Mosquito Ecology: Field Sampling Methods, 2nd edition. London, United Kingdom: Elsevier Applied Science, 499610. [Google Scholar]
  13. Sallum MA, Forattini OP, , 1996. Revision of the Spissipes Section of Culex (Melanoconion) (Diptera:Culicidae). J Am Mosq Control Assoc 12: 517600. [Google Scholar]
  14. Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, Guzman H, Wood TG, Popov V, Gorchakov R, Gonzalez AV, Haddow AD, Watts DM, da Rosa AP, Weaver SC, Lipkin WI, Tesh RB, , 2013. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol 87: 24752488.[Crossref] [Google Scholar]
  15. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B, , 2012. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40: W622W627.[Crossref] [Google Scholar]
  16. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I, , 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 11171123.[Crossref] [Google Scholar]
  17. Langmead B, Salzberg SL, , 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357359.[Crossref] [Google Scholar]
  18. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, , 2011. Integrative genomics viewer. Nat Biotechnol 29: 2426.[Crossref] [Google Scholar]
  19. Posada D, Crandall KA, , 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817818.[Crossref] [Google Scholar]
  20. Huelsenbeck JP, Ronquist F, , 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754755.[Crossref] [Google Scholar]
  21. Ronquist F, Huelsenbeck JP, , 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.[Crossref] [Google Scholar]
  22. Wengler G, Wengler G, , 1981. Terminal sequences of the genome and replicatioe-form RNA of the flavivirus West Nile virus: absence of poly (A) and possible role in RNA replication. Virology 113: 544555.[Crossref] [Google Scholar]
  23. Cammisa-Parks H, Cisar LA, Kane A, Stollar V, , 1992. The complete nucleotide sequence of cell fusing agent (CFA): homology between the nonstructural proteins encoded by CFA and the nonstructural proteins encoded by arthropod-borne flaviviruses. Virology 189: 511524.[Crossref] [Google Scholar]
  24. Cook S, Moureau G, Harbach RE, Mukwaya L, Goodger K, Ssenfuka F, Gould E, Holmes EC, de Lamballerie X, , 2009. Isolation of a novel species of flavivirus and a new strain of Culex flavivirus (Flaviviridae) from a natural mosquito population in Uganda. J Gen Virol 90: 26692678.[Crossref] [Google Scholar]
  25. Crabtree MB, Nga PT, Miller BR, , 2009. Isolation and characterization of a new mosquito flavivirus, Quang Binh virus, from Vietnam. Arch Virol 154: 857860.[Crossref] [Google Scholar]
  26. Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K, , 2007. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405414.[Crossref] [Google Scholar]
  27. Tyler S, Bolling BG, Blair CD, Brault AC, Pabbaraju K, Armijos MV, Clark DC, Calisher CH, Drebot MA, , 2011. Distribution and phylogenetic comparisons of a novel mosquito flavivirus sequence present in Culex tarsalis mosquitoes from western Canada with viruses isolated in California and Colorado. Am J Trop Med Hyg 85: 162168.[Crossref] [Google Scholar]
  28. Crabtree MB, Sang RC, Stollar V, Dunster LM, Miller BR, , 2003. Genetic and phenotypic characterization of the newly described insect flavivirus, Kamiti River virus. Arch Virol 148: 10951118.[Crossref] [Google Scholar]
  29. Hoshino K, Isawa H, Tsuda Y, Sawabe K, Kobayashi M, , 2009. Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 39: 119129.[Crossref] [Google Scholar]
  30. Evangelista J, Cruz C, Guevara C, Astete H, Carey C, Kochel TJ, Morrison AC, Williams M, Halsey ES, Forshey BM, , 2013. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. J Gen Virol 94: 12661272.[Crossref] [Google Scholar]
  31. Junglen S, Kopp A, Kurth A, Pauli G, Ellerbrok H, Leendertz FH, , 2009. A new flavivirus and a new vector: characterization of a novel flavivirus isolated from Uranotaenia mosquitoes from a tropical rain forest. J Virol 83: 44624468.[Crossref] [Google Scholar]
  32. Wang Z, Guo J, Han Y, An S, , 2014. Donggang virus, complete genome. NCBI reference sequence: NC016997.1, Nov. 1, 2014. [Google Scholar]
  33. Huhtamo E, Putkuri N, Kurkela S, Manni T, Vaheri A, Vapalahti O, Uzcategue NY, , 2009. Characterization of a novel flavivirus from mosqutioes in northern Europe that is related to mosquito-borne flaviviruses of the tropics. J Virol 83: 95329540.[Crossref] [Google Scholar]
  34. Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, Nowotny N, , 2013. Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen Virol 94: 24492457.[Crossref] [Google Scholar]
  35. Kenney J, Solberg OD, Langevin SA, Brault AC, , 2014. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol 95: 27962808.[Crossref] [Google Scholar]
  36. Lee JS, Grubaugh ND, Kondig JP, Turell MJ, Kim HC, Klein TA, O'Guinn ML, , 2013. Isolation and genomic characterization of Chaoyang virus strain ROK 144 from Aedes vexans nipponii from the Republic of Korea. Virology 435: 220224.[Crossref] [Google Scholar]
  37. Vazquez A, Sanchez-Seco MP, Palacios G, Mojero F, Reyes N, Ruiz S, Aranda C, Marques E, Escosa R, Moreno J, Figuerola J, Tenorio A, , 2012. Novel flaviviruses detected in different species of mosquitoes in Spain. Vector Borne Zoonotic Dis 12: 223229.[Crossref] [Google Scholar]
  38. Saiyasombat R, Bolling BG, Brault AC, Bartholomay LC, Blitvich BJ, , 2011. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol 48: 10311038.[Crossref] [Google Scholar]
  39. Bolling BG, Vasilakis N, Guzman H, Widen SG, Wood TG, Popov VL, Thangamani S, Tesh RB, , 2015. Insect-specific viruses detected in laboratory mosquito colonies and their potential implications for experiments evaluating arbovirus vector competence. Am J Trop Med Hyg 92: 422428.[Crossref] [Google Scholar]
  40. Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD, , 2012. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427: 9097.[Crossref] [Google Scholar]
  41. Kent RJ, Crabtree MB, Miller BR, , 2010. Transmission of West Nile virus by Culex quinquefasicatus stay infected with Culex flavivirus Izabal. PLoS Negl Trop Dis 4: e671.[Crossref] [Google Scholar]
  42. Blair CD, , 2011. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol 6: 265277.[Crossref] [Google Scholar]
  43. Fraqkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JF, Kohl A, , 2009. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol 90: 20612072.[Crossref] [Google Scholar]
  44. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Valk JM, Kohl A, Khromykh AA, Pijlman GB, , 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. J Virol 86: 1348613500.[Crossref] [Google Scholar]
  45. Frantiu FD, Zakir T, Walker T, Popovici J, Pyke AT, van den Hurk A, McGraw EA, O'Neill SL, , 2014. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia . PLoS Negl Trop Dis 8: e2688.[Crossref] [Google Scholar]
  46. Bian G, Xu Y, Lu P, Xie Y, Xi Z, , 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti . PLoS Pathog 6: e1000833.[Crossref] [Google Scholar]
  47. Hussain M, Lu G, Torres S, Edmonds JH, Kay BH, Khromykh AA, Asgari S, , 2013. Effect of Wolbachia on replication of West Nile virus in a mosquito cell line and adult mosquitoes. J Virol 87: 851858.[Crossref] [Google Scholar]
  48. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, Dimopoulos G, , 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Neglected Trop Dis 6: e1561.[Crossref] [Google Scholar]
  49. Jupatanakul N, Sim S, Dimopoulos G, , 2014. The insect microbiome modulates vector competence for arboviruses. Viruses 6: 42944313.[Crossref] [Google Scholar]
  50. Weaver SC, Coffey LL, Nussenzveig R, Ortiz D, Smith D, Gillespie SH, Smith GL, Osbourn A, , 2014. Vector competence. , eds. Microbe-Vector Interactions in Vector-Borne Diseases. Cambridge, United Kingdom: Cambridge University Press, 139180. [Google Scholar]
  51. Hardy JL, Monath TP, , 1988. Susceptibility and resistance of vector mosquitoes. , ed. The Arboviruses: Epidemiology and Ecology, Vol. 1. Boca Raton, FL: CRC Press, Inc., 87126. [Google Scholar]
  52. Espinoza-Gomez F, Lopez-Lemus AU, Rodriguez-Sanchez IP, Martinez-Fierro ML, Newton-Sanchez DA, Chavez-Flores E, Delgado-Enciso I, , 2011. Detection of sequences from a potentially novel strain of cell fusing agent virus in Mexican Stegomyia (Aedes) aegypti mosquitoes. Arch Virol 156: 12631267.[Crossref] [Google Scholar]
  53. Cook S, Bennett SN, Holmes EC, De Cheese R, Moureau G, de Lamballerie X, , 2006. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87: 735748.[Crossref] [Google Scholar]
  54. Yamanaka A, Thongrungkiat S, Ramasoota P, Konishi E, , 2013. Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. Infect Genet Evol 19: 188194.[Crossref] [Google Scholar]
  55. Bolling BG, Weaver SC, Tesh RB, Vasilakis N, , 2015. Insect-specific virus discovery: significance for the arbovirus community. Viruses 7: 49114928.[Crossref] [Google Scholar]
  56. Coffey LL, Page BL, Greninger AL, Herring BL, Russell RC, Doggert SL, Haniotis J, Wang C, Deng X, Delwart EL, , 2014. Enhanced arbovirus surveillance with deep sequencing: identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology 448: 146158.[Crossref] [Google Scholar]
  57. Cooks S, Chung BYW, Bass D, Moureau G, Tang S, McAlister E, Culverwell CL, Glucksman E, Wang H, Brown TDK, Gould EA, Habach RE, de Lamballerie X, Firth AE, , 2013. Novel virus discovery and genome reconstruciton from field RNA samples reveals highly divergent viruses in dipteran hosts. PLoS One 8: e80720.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0117
Loading
/content/journals/10.4269/ajtmh.15-0117
Loading

Data & Media loading...

Supplementary PDF

  • Received : 09 Feb 2015
  • Accepted : 09 Jul 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error