International Centers of Excellence for Malaria Research: Background, Progress, and Ongoing Activities
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The unprecedented global efforts for malaria elimination in the past decade have resulted in altered vectorial systems, vector behaviors, and bionomics. These changes combined with increasingly evident heterogeneities in malaria transmission require innovative vector control strategies in addition to the established practices of long-lasting insecticidal nets and indoor residual spraying. Integrated vector management will require focal and tailored vector control to achieve malaria elimination. This switch of emphasis from universal coverage to universal coverage plus additional interventions will be reliant on improved entomological monitoring and evaluation. In 2010, the National Institutes for Allergies and Infectious Diseases (NIAID) established a network of malaria research centers termed ICEMRs (International Centers for Excellence in Malaria Research) expressly to develop this evidence base in diverse malaria endemic settings. In this article, we contrast the differing ecology and transmission settings across the ICEMR study locations. In South America, Africa, and Asia, vector biologists are already dealing with many of the issues of pushing to elimination such as highly focal transmission, proportionate increase in the importance of outdoor and crepuscular biting, vector species complexity, and “sub patent” vector transmission.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2013. World Malaria Report 2013. Geneva, Switzerland: World Health Organization, 284. [Google Scholar]
  2. Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V, , 2011. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27: 9198.[Crossref] [Google Scholar]
  3. Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR, , 2013. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12: 56.[Crossref] [Google Scholar]
  4. Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, Djegbe I, Guis H, Corbel V, , 2012. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206: 16221629.[Crossref] [Google Scholar]
  5. Sougoufara S, Diedhiou SM, Doucoure S, Diagne N, Sembene PM, Harry M, Trape JF, Sokhna C, Ndiath MO, , 2014. Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J 13: 125.[Crossref] [Google Scholar]
  6. Durnez L, Coosemans M, Manguin S, , 2013. Residual transmission of malaria: an old issue for new approaches. , ed. Anopheles Mosquitoes—New Insights into Malaria Vectors. Rijeka, Croatia: InTech Open. [Google Scholar]
  7. Mnzava AP, Macdonald MB, Knox TB, Temu EA, Shiff CJ, , 2014. Malaria vector control at a crossroads: public health entomology and the drive to elimination. Trans R Soc Trop Med Hyg 108: 550554.[Crossref] [Google Scholar]
  8. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, Slotman MA, , 2011. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10: 184.[Crossref] [Google Scholar]
  9. Gatton ML, Chitnis N, Churcher T, Donnelly MJ, Ghani AC, Godfray HC, Gould F, Hastings I, Marshall J, Ranson H, Rowland M, Shaman J, Lindsay SW, , 2013. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 67: 12181230.[Crossref] [Google Scholar]
  10. Geissbuhler Y, Chaki P, Emidi B, Govella NJ, Shirima R, Mayagaya V, Mtasiwa D, Mshinda H, Fillinger U, Lindsay SW, Kannady K, de Castro MC, Tanner M, Killeen GF, , 2007. Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar J 6: 126.[Crossref] [Google Scholar]
  11. Killeen GF, Chitnis N, , 2014. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J 13: 97.[Crossref] [Google Scholar]
  12. Stevenson J, St Laurent B, Lobo NF, Cooke MK, Kahindi SC, Oriango RM, Harbach RE, Cox J, Drakeley C, , 2012. Novel vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis 18: 15471549.[Crossref] [Google Scholar]
  13. Taylor B, , 1975. Observations on malaria vectors of the Anopheles punctulatus complex in the British Solomon Islands Protectorate. J Med Entomol 11: 677687.[Crossref] [Google Scholar]
  14. Thevasagayam ES, , 1983. Malaria Control Strategies in the Southwest Pacific Countries—Reappraisal. Kuala Lumpur, Malaysia: World Health Organization. [Google Scholar]
  15. Gil LH, Alves FP, Zieler H, Salcedo JM, Durlacher RR, Cunha RP, Tada MS, Camargo LM, Camargo EP, Pereira-da-Silva LH, , 2003. Seasonal malaria transmission and variation of anopheline density in two distinct endemic areas in Brazilian Amazonia. J Med Entomol 40: 636641.[Crossref] [Google Scholar]
  16. Norris LC, Norris DE, , 2013. Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha, Zambia. Am J Trop Med Hyg 88: 710717.[Crossref] [Google Scholar]
  17. Smith DL, Perkins TA, Reiner RC, Jr Barker CM, Niu T, Chaves LF, Ellis AM, George DB, Le Menach A, Pulliam JR, Bisanzio D, Buckee C, Chiyaka C, Cummings DA, Garcia AJ, Gatton ML, Gething PW, Hartley DM, Johnston G, Klein EY, Michael E, Lloyd AL, Pigott DM, Reisen WK, Ruktanonchai N, Singh BK, Stoller J, Tatem AJ, Kitron U, Godfray HC, Cohen JM, Hay SI, Scott TW, , 2014. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg 108: 185197.[Crossref] [Google Scholar]
  18. Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED, , 2010. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9: 62.[Crossref] [Google Scholar]
  19. Bugoro H, Iro'ofa C, Mackenzie DO, Apairamo A, Hevalao W, Corcoran S, Bobogare A, Beebe NW, Russell TL, Chen CC, Cooper RD, , 2011. Changes in vector species composition and current vector biology and behaviour will favour malaria elimination in Santa Isabel Province, Solomon Islands. Malar J 10: 287.[Crossref] [Google Scholar]
  20. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HC, Harbach RE, Hay SI, , 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3: 117.[Crossref] [Google Scholar]
  21. Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI, , 2010. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3: 72.[Crossref] [Google Scholar]
  22. Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI, , 2011. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic precis. Parasit Vectors 4: 89.[Crossref] [Google Scholar]
  23. Ulrich JN, Naranjo DP, Alimi TO, Muller GC, Beier JC, , 2013. How much vector control is needed to achieve malaria elimination? Trends Parasitol 29: 104109.[Crossref] [Google Scholar]
  24. Barbosa S, Gozze AB, Lima NF, Batista CL, Bastos M da S, Nicolete VC, Fontoura PS, Goncalves RM, Viana SA, Menezes MJ, Scopel KK, Cavasini CE, Malafronte R dos S, da Silva-Nunes M, Vinetz JM, Castro MC, Ferreira MU, , 2014. Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis 8: e3109.[Crossref] [Google Scholar]
  25. Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, Kamya MR, Staedke SG, Donnelly MJ, Drakeley C, Greenhouse B, Dorsey G, Lindsay SW, , 2014. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar J 13: 111.[Crossref] [Google Scholar]
  26. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, D'Alessandro U, Coosemans M, , 2006. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg 75: 219225. [Google Scholar]
  27. Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D, Donnelly MJ, , 2013. Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance. Med Vet Entomol 27: 276283.[Crossref] [Google Scholar]
  28. Coluzzi M, Sabatini A, Petrarca V, Di Deco MA, , 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73: 483497.[Crossref] [Google Scholar]
  29. Manoukis NC, Powell JR, Toure MB, Sacko A, Edillo FE, Coulibaly MB, Traore SF, Taylor CE, Besansky NJ, , 2008. A test of the chromosomal theory of ecotypic speciation in Anopheles gambiae . Proc Natl Acad Sci USA 105: 29402945.[Crossref] [Google Scholar]
  30. Mathanga DP, Walker ED, Wilson ML, Ali D, Taylor TE, Laufer MK, , 2012. Malaria control in Malawi: current status and directions for the future. Acta Trop 121: 212217.[Crossref] [Google Scholar]
  31. Wilson ML, Walker ED, Mzilahowa T, Mathanga DP, Taylor TE, , 2012. Malaria elimination in Malawi: research needs in highly endemic, poverty-stricken contexts. Acta Trop 121: 218226.[Crossref] [Google Scholar]
  32. Spiers AA, Mzilahowa T, Atkinson D, McCall PJ, , 2002. The malaria vectors of the Lower Shire valley, Malawi. Malawi Med J 14: 47. [Google Scholar]
  33. Merelo-Lobo AR, McCall PJ, Perez MA, Spiers AA, Mzilahowa T, Ngwira B, Molyneux DH, Donnelly MJ, , 2003. Identification of the vectors of lymphatic filariasis in the lower Shire Valley, southern Malawi. Trans R Soc Trop Med Hyg 97: 299301.[Crossref] [Google Scholar]
  34. National Malaria Control Programme (NMCP, Malawi) ICF International, 2012. Malawi Malaria Indicator Survey (MIS) 2012. Lilongwe, Malawi, and Calverton, MD: NMCP and ICF International, 1103. [Google Scholar]
  35. Vezenegho SB, Chiphwanya J, Hunt RH, Coetzee M, Bass C, Koekemoer LL, , 2013. Characterization of the Anopheles funestus group, including Anopheles funestus-like, from northern Malawi. Trans R Soc Trop Med Hyg 107: 753762.[Crossref] [Google Scholar]
  36. Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, Miller JM, Russell TL, Briet OJ, Killeen GF, , 2012. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, south-east Zambia. Parasit Vectors 5: 101.[Crossref] [Google Scholar]
  37. Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, Okumu F, Diallo D, Abdulla S, Smith T, Killeen G, , 2013. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol 42: 235247.[Crossref] [Google Scholar]
  38. Ceesay SJ, Bojang KA, Nwakanma D, Conway DJ, Koita OA, Doumbia SO, Ndiaye D, Coulibaly TF, Diakite M, Traore SF, Coulibaly M, Ndiaye JL, Sarr O, Gaye O, Konate L, Sy N, Faye B, Faye O, Sogoba N, Jawara M, Dao A, Poudiougou B, Diawara S, Okebe J, Sangare L, Abubakar I, Sissako A, Diarra A, Keita M, Kandeh B, Long CA, Fairhurst RM, Duraisingh M, Perry R, Muskavitch MA, Valim C, Volkman SK, Wirth DF, Krogstad DJ, , 2012. Sahel, savana, riverine and urban malaria in west Africa: similar control policies with different outcomes. Acta Trop 121: 166174.[Crossref] [Google Scholar]
  39. Malaria Atlas Project. Available at: http://www.map.ox.ac.uk/. [Google Scholar]
  40. Trape JF, Tall A, Sokhna C, Ly AB, Diagne N, Ndiath O, Mazenot C, Richard V, Badiane A, Dieye-Ba F, Faye J, Ndiaye G, Diene Sarr F, Roucher C, Bouganali C, Bassene H, Toure-Balde A, Roussilhon C, Perraut R, Spiegel A, Sarthou JL, da Silva LP, Mercereau-Puijalon O, Druilhe P, Rogier C, , 2014. The rise and fall of malaria in a west African rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study. Lancet Infect Dis 14: 476488.[Crossref] [Google Scholar]
  41. Toure YT, Petrarca V, Traore SF, Coulibaly A, Maiga HM, Sankare O, Sow M, Di Deco MA, Coluzzi M, , 1998. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali, west Africa. Parassitologia 40: 477511. [Google Scholar]
  42. Fillinger U, Sombroek H, Majambere S, van Loon E, Takken W, Lindsay SW, , 2009. Identifying the most productive breeding sites for malaria mosquitoes in The Gambia. Malar J 8: 62.[Crossref] [Google Scholar]
  43. Sinka ME, Michael JB, Sylvie M, Yasmin R-P, Theeraphap C, Maureen C, Charles MM, Janet H, Anand PP, William HT, Peter WG, Caroline WK, Thomas RB, Ralph EH, Simon IH, , 2012. A global map of dominant malaria vectors. Parasit Vectors 5: 69.[Crossref] [Google Scholar]
  44. Dolo G, Briet OJ, Dao A, Traore SF, Bouare M, Sogoba N, Niare O, Bagayogo M, Sangare D, Teuscher T, Toure YT, , 2004. Malaria transmission in relation to rice cultivation in the irrigated Sahel of Mali. Acta Trop 89: 147159.[Crossref] [Google Scholar]
  45. Fornadel CM, Norris DE, , 2008. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg 79: 876880. [Google Scholar]
  46. Fornadel CM, Norris LC, Glass GE, Norris DE, , 2010. Analysis of Anopheles arabiensis blood feeding behavior in southern Zambia during the two years after introduction of insecticide-treated bed nets. Am J Trop Med Hyg 83: 848853.[Crossref] [Google Scholar]
  47. Fornadel CM, Norris LC, Franco V, Norris DE, , 2011. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis 11: 11731179.[Crossref] [Google Scholar]
  48. Moss WJ, Norris DE, Mharakurwa S, Scott A, Mulenga M, Mason PR, Chipeta J, Thuma PE, , 2012. Challenges and prospects for malaria elimination in the southern Africa region. Acta Trop 121: 207211.[Crossref] [Google Scholar]
  49. Kent RJ, Mharakurwa S, Norris DE, , 2007. Spatial and temporal genetic structure of Anopheles arabiensis in southern Zambia over consecutive wet and drought years. Am J Trop Med Hyg 77: 316323. [Google Scholar]
  50. Mukonka VM, Chanda E, Haque U, Kamuliwo M, Mushinge G, Chileshe J, Chibwe KA, Norris DE, Mulenga M, Chaponda M, Muleba M, Glass GE, Moss WJ, , 2014. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar J 13: 153.[Crossref] [Google Scholar]
  51. Mharakurwa S, Mutambu SL, Mberikunashe J, Thuma PE, Moss WJ, Mason PR, , 2013. Changes in the burden of malaria following scale up of malaria control interventions in Mutasa District, Zimbabwe. Malar J 12: 223.[Crossref] [Google Scholar]
  52. Herrera S, Quinones ML, Quintero JP, Corredor V, Fuller DO, Mateus JC, Calzada JE, Gutierrez JB, Llanos A, Soto E, Menendez C, Wu Y, Alonso P, Carrasquilla G, Galinski M, Beier JC, Arevalo-Herrera M, , 2012. Prospects for malaria elimination in non-Amazonian regions of Latin America. Acta Trop 121: 315323.[Crossref] [Google Scholar]
  53. Hiwat H, Mitro S, Samjhawan A, Sardjoe P, Soekhoe T, Takken W, , 2012. Collapse of Anopheles darlingi populations in Suriname after introduction of insecticide-treated nets (ITNs); malaria down to near elimination level. Am J Trop Med Hyg 86: 649655.[Crossref] [Google Scholar]
  54. Arevalo-Herrera M, Quinones ML, Guerra C, Cespedes N, Giron S, Ahumada M, Pineros JG, Padilla N, Terrientes Z, Rosas A, Padilla JC, Escalante AA, Beier JC, Herrera S, , 2012. Malaria in selected non-Amazonian countries of Latin America. Acta Trop 121: 303314.[Crossref] [Google Scholar]
  55. Naranjo-Diaz N, Altamiranda M, Luckhart S, Conn JE, Correa MM, , 2014. Malaria vectors in ecologically heterogeneous localities of the Colombian Pacific region. PLoS One 9: e103769.[Crossref] [Google Scholar]
  56. da Silva-Nunes M, Moreno M, Conn JE, Gamboa D, Abeles S, Vinetz JM, Ferreira MU, , 2012. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop 12: 281291.[Crossref] [Google Scholar]
  57. Grietens KP, Muela Ribera J, Soto V, Tenorio A, Hoibak S, Aguirre AR, Toomer E, Rodriguez H, Llanos Cuentas A, D'Alessandro U, Gamboa D, Erhart A, , 2013. Traditional nets interfere with the uptake of long-lasting insecticidal nets in the Peruvian Amazon: the relevance of net preference for achieving high coverage and use. PLoS One 8: e50294.[Crossref] [Google Scholar]
  58. Conn JE, Quiñones ML, Póvoa MM, Manguin S, , 2013. Phylogeography, vectors, and transmission in Latin America. , ed. Anopheles Mosquitoes—New Insights into Malaria Vectors. Rijeka, Croatia: InTech Open. [Google Scholar]
  59. Martins-Campos KM, Pinheiro WD, Vitor-Silva S, Siqueira AM, Melo GC, Rodrigues IC, Fe NF, Barbosa M, Tadei WP, Guinovart C, Bassat Q, Alonso PL, Lacerda MV, Monteiro WM, , 2012. Integrated vector management targeting Anopheles darlingi populations decreases malaria incidence in an unstable transmission area, in the rural Brazilian Amazon. Malar J 11: 351.[Crossref] [Google Scholar]
  60. Hiwat H, Bretas G, , 2011. Ecology of Anopheles darlingi root with respect to vector importance: a review. Parasit Vectors 4: 177.[Crossref] [Google Scholar]
  61. Moutinho PR, Gil LH, Cruz RB, Ribolla PE, , 2011. Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil. Malar J 10: 174.[Crossref] [Google Scholar]
  62. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Sanches Lozano W, Pinedo Cancino V, Patz JA, , 2006. The effect of deforestation on the human-biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74: 311. [Google Scholar]
  63. Parker BS, Paredes Olortegui M, Penataro Yori P, Escobedo K, Florin D, Rengifo Pinedo S, Cardenas Greffa R, Capcha Vega L, Rodriguez Ferrucci H, Pan WK, Banda Chavez C, Vinetz JM, Kosek M, , 2013. Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar J 12: 178.[Crossref] [Google Scholar]
  64. Zimmerman RH, Galardo AK, Lounibos LP, Arruda M, Wirtz R, , 2006. Bloodmeal hosts of Anopheles species (Diptera: Culicidae) in a malaria-endemic area of the Brazilian Amazon. J Med Entomol 43: 947956.[Crossref] [Google Scholar]
  65. Montoya-Lerma J, Solarte YA, Giraldo-Calderon GI, Quinones ML, Ruiz-Lopez F, Wilkerson RC, Gonzalez R, , 2011. Malaria vector species in Colombia: a review. Mem Inst Oswaldo Cruz 106 (Suppl 1): 223238.[Crossref] [Google Scholar]
  66. Foster PG, Bergo ES, Bourke BP, Oliveira TM, Nagaki SS, Sant'Ana DC, Sallum MA, , 2013. Phylogenetic analysis and DNA-based species confirmation in Anopheles (Nyssorhynchus). PLoS One 8: e54063.[Crossref] [Google Scholar]
  67. Korgaonkar NS, Kumar A, Yadav RS, Kabadi D, Dash AP, , 2012. Mosquito biting activity on humans and detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India. Indian J Med Res 135: 120126.[Crossref] [Google Scholar]
  68. Directorate General of Health Services MoHFW, Trend of Malaria (2001–2013). Available at: http://nvbdcp.gov.in/malaria9.html. Accessed May 13, 2015.
  69. Adak T, Singh OP, Nanda N, Sharma VP, Subbarao SK, , 2006. Isolation of a Plasmodium vivax refractory Anopheles culicifacies strain from India. Trop Med Int Health 11: 197203.[Crossref] [Google Scholar]
  70. Sahu NK, Sahu S, Kohli DV, , 2008. Novel molecular targets for antimalarial drug development. Chem Biol Drug Des 71: 287297.[Crossref] [Google Scholar]
  71. Sharma SK, Tyagi PK, Padhan K, Upadhyay AK, Haque MA, Nanda N, Joshi H, Biswas S, Adak T, Das BS, Chauhan VS, Chitnis CE, Subbarao SK, , 2006. Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Trans R Soc Trop Med Hyg 100: 917925.[Crossref] [Google Scholar]
  72. Tripathy A, Samanta L, Das S, Parida SK, Marai N, Hazra RK, Kar SK, Mahapatra N, , 2010. Distribution of sibling species of Anopheles culicifacies s.l. and Anopheles fluviatilis s.l. and their vectorial capacity in eight different malaria endemic districts of Orissa, India. Mem Inst Oswaldo Cruz 105: 981987.[Crossref] [Google Scholar]
  73. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF, , 2011. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: 80.[Crossref] [Google Scholar]
  74. Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, Gatakaa H, Githure J, Borgemeister C, Keating J, Beier JC, , 2013. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J 12: 13.[Crossref] [Google Scholar]
  75. Sahu SS, Gunasekaran K, Vanamail P, Jambulingam P, , 2011. Seasonal prevalence and resting behaviour of Anopheles minimus Theobald and An. fluviatilis James (Diptera: Culicidae) in east-central India. Indian J Med Res 133: 655661. [Google Scholar]
  76. WHO, 2014. The Asia Pacific Malaria Elimination Network (APMEN) Supporting the Common Goal of a Malaria-Free Asia Pacific. Geneva, Switzerland: World Health Organization. [Google Scholar]
  77. Yu G, Yan G, Zhang N, Zhong D, Wang Y, He Z, Yan Z, Fu W, Yang F, Chen B, , 2013. The Anopheles community and the role of Anopheles minimus on malaria transmission on the China–Myanmar border. Parasit Vectors 6: 264.[Crossref] [Google Scholar]
  78. Hetzel MW, , 2009. An integrated approach to malaria control in Papua New Guinea. P N G Med J 52: 17. [Google Scholar]
  79. Kazura JW, Siba PM, Betuela I, Mueller I, , 2012. Research challenges and gaps in malaria knowledge in Papua New Guinea. Acta Trop 121: 274280.[Crossref] [Google Scholar]
  80. Henry-Halldin CN, Nadesakumaran K, Keven JB, Zimmerman AM, Siba P, Mueller I, Hetzel MW, Kazura JW, Thomsen E, Reimer LJ, Zimmerman PA, , 2012. Multiplex assay for species identification and monitoring of insecticide resistance in Anopheles punctulatus group populations of Papua New Guinea. Am J Trop Med Hyg 86: 140151.[Crossref] [Google Scholar]
  81. Beebe NW, Russell TL, Burkot TR, Lobo NF, Cooper RD, Manguin S, , 2013. The systematics and bionomics of malaria vectors in the southwest Pacific. , ed. Anopheles Mosquitoes—New Insights into Malaria Vectors. Rijeka, Croatia: InTech Open. [Google Scholar]
  82. Cooper RD, Waterson DG, Frances SP, Beebe NW, Pluess B, Sweeney AW, , 2009. Malaria vectors of Papua New Guinea. Int J Parasitol 39: 14951501.[Crossref] [Google Scholar]
  83. Burkot TR, Narara A, Paru R, Graves PM, Garner P, , 1989. Human host selection by anophelines: no evidence for preferential selection of malaria or microfilariae-infected individuals in a hyperendemic area. Parasitology 98: 337342.[Crossref] [Google Scholar]
  84. Burkot TR, Russell TL, Reimer LJ, Bugoro H, Beebe NW, Cooper RD, Sukawati S, Collins FH, Lobo NF, , 2013. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 12: 49.[Crossref] [Google Scholar]
  85. Keven JB, Henry-Halldin CN, Thomsen EK, Mueller I, Siba PM, Zimmerman PA, Reimer LJ, , 2010. Pyrethroid susceptibility in natural populations of the Anopheles punctulatus group (Diptera: Culicidae) in Papua New Guinea. Am J Trop Med Hyg 83: 12591261.[Crossref] [Google Scholar]
  86. Ambrose L, Cooper RD, Russell TL, Burkot TR, Lobo NF, Collins FH, Hii J, Beebe NW, , 2014. Microsatellite and mitochondrial markers reveal strong gene flow barriers for Anopheles farauti in the Solomon Archipelago: implications for malaria vector control. Int J Parasitol 44: 225233.[Crossref] [Google Scholar]
  87. Gimnig JE, Walker ED, Otieno P, Kosgei J, Olang G, Ombok M, Williamson J, Marwanga D, Abong'o D, Desai M, Kariuki S, Hamel MJ, Lobo NF, Vulule J, Bayoh MN, , 2013. Incidence of malaria among mosquito collectors conducting human landing catches in western Kenya. Am J Trop Med Hyg 88: 301308.[Crossref] [Google Scholar]
  88. Tonnang HE, Kangalawe RY, Yanda PZ, , 2010. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malar J 9: 111.[Crossref] [Google Scholar]
  89. Lengeler C, , 2004. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev Cd000363. [Google Scholar]
  90. Pluess B, Tanser FC, Lengeler C, Sharp BL, , 2010. Indoor residual spraying for preventing malaria. Cochrane Database Syst Rev Cd006657. [Google Scholar]
  91. Marshall JM, White MT, Ghani AC, Schlein Y, Muller GC, Beier JC, , 2013. Quantifying the mosquito's sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control. Malar J 12: 291.[Crossref] [Google Scholar]
  92. Stewart ZP, Oxborough RM, Tungu PK, Kirby MJ, Rowland MW, Irish SR, , 2013. Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes. PLoS One 8: e84168.[Crossref] [Google Scholar]
  93. Rowland M, Durrani N, Kenward M, Mohammed N, Urahman H, Hewitt S, , 2001. Control of malaria in Pakistan by applying deltamethrin insecticide to cattle: a community-randomised trial. Lancet 357: 18371841.[Crossref] [Google Scholar]
  94. Habtewold T, Prior A, Torr SJ, Gibson G, , 2004. Could insecticide-treated cattle reduce Afrotropical malaria transmission? Effects of deltamethrin-treated Zebu on Anopheles arabiensis behaviour and survival in Ethiopia. Med Vet Entomol 18: 408417.[Crossref] [Google Scholar]
  95. Fillinger U, Lindsay SW, , 2006. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop Med Int Health 11: 16291642.[Crossref] [Google Scholar]
  96. Keiser J, Singer BH, Utzinger J, , 2005. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5: 695708.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 05 Jan 2015
  • Accepted : 20 May 2015
  • Published online : 02 Sep 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error