1921
International Centers of Excellence for Malaria Research: Background, Progress, and Ongoing Activities
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0007
2015-09-02
2019-06-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/3_Suppl/57.html?itemId=/content/journals/10.4269/ajtmh.15-0007&mimeType=html&fmt=ahah

References

  1. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD, , 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.[Crossref] [Google Scholar]
  2. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN, , 2008. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.[Crossref] [Google Scholar]
  3. Okumu FO, Moore SJ, , 2011. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: a review of possible outcomes and an outline of suggestions for the future. Malar J 10: 208.[Crossref] [Google Scholar]
  4. Olotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, Lievens M, Leboulleux D, Njuguna P, Peshu N, Marsh K, Bejon P, , 2013. Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure. N Engl J Med 368: 11111120.[Crossref] [Google Scholar]
  5. Gosling RD, Okell L, Mosha J, Chandramohan D, , 2011. The role of antimalarial treatment in the elimination of malaria. Clin Microbiol Infect 17: 16171623.[Crossref] [Google Scholar]
  6. Greenwood B, , 2010. Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malar J 9 (Suppl 3): S2.[Crossref] [Google Scholar]
  7. Nosten F, White NJ, , 2007. Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77: 181192. [Google Scholar]
  8. Schlagenhauf P, Petersen E, , 2008. Malaria chemoprophylaxis: strategies for risk groups. Clin Microbiol Rev 21: 466472.[Crossref] [Google Scholar]
  9. Baird JK, , 2011. Resistance to chloroquine unhinges vivax malaria therapeutics. Antimicrob Agents Chemother 55: 18271830.[Crossref] [Google Scholar]
  10. Davis TM, Hung TY, Sim IK, Karunajeewa HA, Ilett KF, , 2005. Piperaquine: a resurgent antimalarial drug. Drugs 65: 7587.[Crossref] [Google Scholar]
  11. Meshnick SR, Dobson MJ, Rosenthal PJ, , 2001. The history of antimalarial drugs. , ed. Antimalarial Chemotherapy: Mechanisms of Action, Resistance, and New Directions in Drug Discovery. Totowa, NJ: Humana Press, 1525. [Google Scholar]
  12. Dahl EL, Rosenthal PJ, , 2008. Apicoplast translation, transcription and genome replication: targets for antimalarial antibiotics. Trends Parasitol 24: 279284.[Crossref] [Google Scholar]
  13. Cui L, Su XZ, , 2009. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 7: 9991013.[Crossref] [Google Scholar]
  14. Dondorp A, Nosten F, Stepniewska K, Day N, White N, , 2005. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717725.[Crossref] [Google Scholar]
  15. Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, Bojang K, Olaosebikan R, Anunobi N, Maitland K, Kivaya E, Agbenyega T, Nguah SB, Evans J, Gesase S, Kahabuka C, Mtove G, Nadjm B, Deen J, Mwanga-Amumpaire J, Nansumba M, Karema C, Umulisa N, Uwimana A, Mokuolu OA, Adedoyin OT, Johnson WB, Tshefu AK, Onyamboko MA, Sakulthaew T, Ngum WP, Silamut K, Stepniewska K, Woodrow CJ, Bethell D, Wills B, Oneko M, Peto TE, von Seidlein L, Day NP, White NJ, , 2010. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376: 16471657.[Crossref] [Google Scholar]
  16. Mu J, Ferdig MT, Feng X, Joy DA, Duan J, Furuya T, Subramanian G, Aravind L, Cooper RA, Wootton JC, Xiong M, Su XZ, , 2003. Multiple transporters associated with malaria parasite responses to chloroquine and quinine. Mol Microbiol 49: 977989.[Crossref] [Google Scholar]
  17. Borges-Walmsley MI, McKeegan KS, Walmsley AR, , 2003. Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376: 313338.[Crossref] [Google Scholar]
  18. Picot S, Olliaro P, de Monbrison F, Bienvenu AL, Price RN, Ringwald P, , 2009. A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria. Malar J 8: 89.[Crossref] [Google Scholar]
  19. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, , 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum . Nature 345: 255258.[Crossref] [Google Scholar]
  20. Sanchez CP, Dave A, Stein WD, Lanzer M, , 2010. Transporters as mediators of drug resistance in Plasmodium falciparum . Int J Parasitol 40: 11091118.[Crossref] [Google Scholar]
  21. Valderramos SG, Fidock DA, , 2006. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27: 594601.[Crossref] [Google Scholar]
  22. Sharom FJ, , 2011. The P-glycoprotein multidrug transporter. Essays Biochem 50: 161178.[Crossref] [Google Scholar]
  23. Cowman AF, Karcz S, Galatis D, Culvenor JG, , 1991. A P-glycoprotein homologue of Plasmodium falciparum is localized on the digestive vacuole. J Cell Biol 113: 10331042.[Crossref] [Google Scholar]
  24. Koenderink JB, Kavishe RA, Rijpma SR, Russel FG, , 2010. The ABCs of multidrug resistance in malaria. Trends Parasitol 26: 440446.[Crossref] [Google Scholar]
  25. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S, , 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364: 438447.[Crossref] [Google Scholar]
  26. Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA, , 2006. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528535.[Crossref] [Google Scholar]
  27. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC, , 2000. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108: 1323.[Crossref] [Google Scholar]
  28. Duraisingh MT, Roper C, Walliker D, Warhurst DC, , 2000. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum . Mol Microbiol 36: 955961.[Crossref] [Google Scholar]
  29. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF, , 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum . Nature 403: 906909.[Crossref] [Google Scholar]
  30. Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, Bull P, Marsh K, Borrmann S, Nzila A, , 2009. In vitro activity of piperaquine, lumefantrine and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in Pfcrt and Pfmdr1 . Antimicrob Agents Chemother 55: 50695073.[Crossref] [Google Scholar]
  31. Tumwebaze P, Conrad MD, Walakira A, LeClair N, Byaruhanga O, Nakazibwe C, Kozak B, Bloome J, Okiring J, Kakuru A, Bigira V, Kapisi J, Legac J, Gut J, Cooper RA, Kamya MR, Havlir DV, Dorsey G, Greenhouse B, Nsobya SL, Rosenthal PJ, , 2015. Impact of antimalarial treatment and chemoprevention on the drug sensitivity of malaria parasites isolated from Ugandan children. Antimicrob Agents Chemother 59: 30183030.[Crossref] [Google Scholar]
  32. Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, Kawamoto F, Miller RS, Meshnick SR, , 2003. Resistance to antimalarials in southeast Asia and genetic polymorphisms in pfmdr1 . Antimicrob Agents Chemother 47: 24182423.[Crossref] [Google Scholar]
  33. Sidhu AB, Valderramos SG, Fidock DA, , 2005. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum . Mol Microbiol 57: 913926.[Crossref] [Google Scholar]
  34. Veiga MI, Ferreira PE, Jornhagen L, Malmberg M, Kone A, Schmidt BA, Petzold M, Bjorkman A, Nosten F, Gil JP, , 2011. Novel polymorphisms in Plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistance. PLoS One 6: e20212.[Crossref] [Google Scholar]
  35. Humphreys GS, Merinopoulos I, Ahmed J, Whitty CJ, Mutabingwa TK, Sutherland CJ, Hallett RL, , 2007. Amodiaquine and artemether-lumefantrine select distinct alleles of the Plasmodium falciparum mdr1 gene in Tanzanian children treated for uncomplicated malaria. Antimicrob Agents Chemother 51: 991997.[Crossref] [Google Scholar]
  36. Zongo I, Dorsey G, Rouamba N, Tinto H, Dokomajilar C, Guiguemde RT, Rosenthal PJ, Ouedraogo JB, , 2007. Artemether-lumefantrine versus amodiaquine plus sulfadoxine-pyrimethamine for uncomplicated falciparum malaria in Burkina Faso: a randomised non-inferiority trial. Lancet 369: 491498.[Crossref] [Google Scholar]
  37. Nsobya SL, Dokomajilar C, Joloba M, Dorsey G, Rosenthal PJ, , 2007. Resistance-mediating Plasmodium falciparum pfcrt and pfmdr1 alleles after treatment with artesunate-amodiaquine in Uganda. Antimicrob Agents Chemother 51: 30233025.[Crossref] [Google Scholar]
  38. Nawaz F, Nsobya SL, Kiggundu M, Joloba M, Rosenthal PJ, , 2009. Selection of parasites with diminished drug susceptibility by amodiaquine-containing antimalarial regimens in Uganda. J Infect Dis 200: 16501657.[Crossref] [Google Scholar]
  39. Conrad MD, LeClair N, Arinaitwe E, Wanzira H, Kakuru A, Bigira V, Muhindo M, Kamya MR, Tappero JW, Greenhouse B, Dorsey G, Rosenthal PJ, , 2014. Comparative impacts over 5 years of artemisinin-based combination therapies on Plasmodium falciparum polymorphisms that modulate drug sensitivity in Ugandan children. J Infect Dis 210: 344353.[Crossref] [Google Scholar]
  40. Sisowath C, Stromberg J, Martensson A, Msellem M, Obondo C, Bjorkman A, Gil JP, , 2005. In vivo selection of Plasmodium falciparum pfmdr1 86N coding alleles by artemether-lumefantrine (Coartem). J Infect Dis 191: 10141017.[Crossref] [Google Scholar]
  41. Happi CT, Gbotosho GO, Folarin OA, Sowunmi A, Hudson T, O'Neil M, Milhous W, Wirth DF, Oduola AM, , 2009. Selection of Plasmodium falciparum multidrug resistance gene 1 alleles in asexual stages and gametocytes by artemether-lumefantrine in Nigerian children with uncomplicated falciparum malaria. Antimicrob Agents Chemother 53: 888895.[Crossref] [Google Scholar]
  42. Some AF, Sere YY, Dokomajilar C, Zongo I, Rouamba N, Greenhouse B, Ouedraogo JB, Rosenthal PJ, , 2010. Selection of known Plasmodium falciparum resistance-mediating polymorphisms by artemether-lumefantrine and amodiaquine-sulfadoxine-pyrimethamine but not dihydroartemisinin-piperaquine in Burkina Faso. Antimicrob Agents Chemother 54: 19491954.[Crossref] [Google Scholar]
  43. Baliraine FN, Rosenthal PJ, , 2011. Prolonged selection of pfmdr1 polymorphisms after treatment of falciparum malaria with artemether-lumefantrine in Uganda. J Infect Dis 204: 11201124.[Crossref] [Google Scholar]
  44. Dorsey G, Staedke S, Clark TD, Njama-Meya D, Nzarubara B, Maiteki-Sebuguzi C, Dokomajilar C, Kamya MR, Rosenthal PJ, , 2007. Combination therapy for uncomplicated falciparum malaria in Ugandan children: a randomized trial. JAMA 297: 22102219.[Crossref] [Google Scholar]
  45. Four Artemisinin-Based Combinations Study Group, 2011. A head-to-head comparison of four artemisinin-based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Med 8: e1001119.[Crossref] [Google Scholar]
  46. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, , 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861871.[Crossref] [Google Scholar]
  47. Martin RE, Kirk K, , 2004. The malaria parasite's chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21: 19381949.[Crossref] [Google Scholar]
  48. Tran CV, Saier MH, Jr, 2004. The principal chloroquine resistance protein of Plasmodium falciparum is a member of the drug/metabolite transporter superfamily. Microbiology 150: 13.[Crossref] [Google Scholar]
  49. Ecker A, Lehane AM, Clain J, Fidock DA, , 2012. PfCRT and its role in antimalarial drug resistance. Trends Parasitol 28: 504514.[Crossref] [Google Scholar]
  50. Lakshmanan V, Bray PG, Verdier-Pinard D, Johnson DJ, Horrocks P, Muhle RA, Alakpa GE, Hughes RH, Ward SA, Krogstad DJ, Sidhu AB, Fidock DA, , 2005. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J 24: 22942305.[Crossref] [Google Scholar]
  51. Sidhu AB, Verdier-Pinard D, Fidock DA, , 2002. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298: 210213.[Crossref] [Google Scholar]
  52. Dahlstrom S, Ferreira PE, Veiga MI, Sedighi N, Wiklund L, Martensson A, Farnert A, Sisowath C, Osorio L, Darban H, Andersson B, Kaneko A, Conseil G, Bjorkman A, Gil JP, , 2009. Plasmodium falciparum multidrug resistance protein 1 and artemisinin-based combination therapy in Africa. J Infect Dis 200: 14561464.[Crossref] [Google Scholar]
  53. Dahlstrom S, Veiga MI, Martensson A, Bjorkman A, Gil JP, , 2009. Polymorphism in PfMRP1 (Plasmodium falciparum multidrug resistance protein 1) amino acid 1466 associated with resistance to sulfadoxine-pyrimethamine treatment. Antimicrob Agents Chemother 53: 25532556.[Crossref] [Google Scholar]
  54. Gupta B, Xu S, Wang Z, Sun L, Miao J, Cui L, Yang Z, , 2014. Plasmodium falciparum multidrug resistance protein 1 (pfmrp1) gene and its association with in vitro drug susceptibility of parasite isolates from north-east Myanmar. J Antimicrob Chemother 69: 21102117.[Crossref] [Google Scholar]
  55. Raj DK, Mu J, Jiang H, Kabat J, Singh S, Sullivan M, Fay MP, McCutchan TF, Su XZ, , 2009. Disruption of a Plasmodium falciparum multidrug resistance-associated protein (PfMRP) alters its fitness and transport of antimalarial drugs and glutathione. J Biol Chem 284: 76877696.[Crossref] [Google Scholar]
  56. Ferdig MT, Cooper RA, Mu J, Deng B, Joy DA, Su XZ, Wellems TE, , 2004. Dissecting the loci of low-level quinine resistance in malaria parasites. Mol Microbiol 52: 985997.[Crossref] [Google Scholar]
  57. Spillman NJ, Allen RJ, McNamara CW, Yeung BK, Winzeler EA, Diagana TT, Kirk K, , 2013. Na+ regulation in the malaria parasite Plasmodium falciparum involves the cation ATPase PfATP4 and is a target of the spiroindolone antimalarials. Cell Host Microbe 13: 227237.[Crossref] [Google Scholar]
  58. Vaidya AB, Morrisey JM, Zhang Z, Das S, Daly TM, Otto TD, Spillman NJ, Wyvratt M, Siegl P, Marfurt J, Wirjanata G, Sebayang BF, Price RN, Chatterjee A, Nagle A, Stasiak M, Charman SA, Angulo-Barturen I, Ferrer S, Belen Jimenez-Diaz M, Martinez MS, Gamo FJ, Avery VM, Ruecker A, Delves M, Kirk K, Berriman M, Kortagere S, Burrows J, Fan E, Bergman LW, , 2014. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum . Nat Commun 5: 5521.[Crossref] [Google Scholar]
  59. Jimenez-Diaz MB, Ebert D, Salinas Y, Pradhan A, Lehane AM, Myrand-Lapierre ME, O'Loughlin KG, Shackleford DM, Justino de Almeida M, Carrillo AK, Clark JA, Dennis AS, Diep J, Deng X, Duffy S, Endsley AN, Fedewa G, Guiguemde WA, Gomez MG, Holbrook G, Horst J, Kim CC, Liu J, Lee MC, Matheny A, Martinez MS, Miller G, Rodriguez-Alejandre A, Sanz L, Sigal M, Spillman NJ, Stein PD, Wang Z, Zhu F, Waterson D, Knapp S, Shelat A, Avery VM, Fidock DA, Gamo FJ, Charman SA, Mirsalis JC, Ma H, Ferrer S, Kirk K, Angulo-Barturen I, Kyle DE, DeRisi JL, Floyd DM, Guy RK, , 2014. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium . Proc Natl Acad Sci USA 111: E5455E5462.[Crossref] [Google Scholar]
  60. Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT, , 2010. Spiroindolones, a potent compound class for the treatment of malaria. Science 329: 11751180.[Crossref] [Google Scholar]
  61. Lehane AM, Ridgway MC, Baker E, Kirk K, , 2014. Diverse chemotypes disrupt ion homeostasis in the malaria parasite. Mol Microbiol 94: 327339.[Crossref] [Google Scholar]
  62. White NJ, Pukrittayakamee S, Phyo AP, Rueangweerayut R, Nosten F, Jittamala P, Jeeyapant A, Jain JP, Lefevre G, Li R, Magnusson B, Diagana TT, Leong FJ, , 2014. Spiroindolone KAE609 for falciparum and vivax malaria. N Engl J Med 371: 403410.[Crossref] [Google Scholar]
  63. da Silva AF, Benchimol JL, , 2014. Malaria and quinine resistance: a medical and scientific issue between Brazil and Germany (1907–19). Med Hist 58: 126.[Crossref] [Google Scholar]
  64. Giboda M, Denis MB, , 1988. Response of Kampuchean strains of Plasmodium falciparum to antimalarials: in-vivo assessment of quinine and quinine plus tetracycline; multiple drug resistance in vitro . J Trop Med Hyg 91: 205211. [Google Scholar]
  65. Pukrittayakamee S, Supanaranond W, Looareesuwan S, Vanijanonta S, White NJ, , 1994. Quinine in severe falciparum malaria: evidence of declining efficacy in Thailand. Trans R Soc Trop Med Hyg 88: 324327.[Crossref] [Google Scholar]
  66. Cowman AF, Galatis D, Thompson JK, , 1994. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 91: 11431147.[Crossref] [Google Scholar]
  67. Henry M, Briolant S, Zettor A, Pelleau S, Baragatti M, Baret E, Mosnier J, Amalvict R, Fusai T, Rogier C, Pradines B, , 2009. Plasmodium falciparum Na+/H+ exchanger 1 transporter is involved in reduced susceptibility to quinine. Antimicrob Agents Chemother 53: 19261930.[Crossref] [Google Scholar]
  68. Meng H, Zhang R, Yang H, Fan Q, Su X, Miao J, Cui L, Yang Z, , 2010. In vitro sensitivity of Plasmodium falciparum clinical isolates from the China-Myanmar border area to quinine and association with polymorphism in the Na+/H+ exchanger. Antimicrob Agents Chemother 54: 43064313.[Crossref] [Google Scholar]
  69. Okombo J, Kiara SM, Rono J, Mwai L, Pole L, Ohuma E, Borrmann S, Ochola LI, Nzila A, , 2010. In vitro activities of quinine and other antimalarials and pfnhe polymorphisms in Plasmodium isolates from Kenya. Antimicrob Agents Chemother 54: 33023307.[Crossref] [Google Scholar]
  70. Andriantsoanirina V, Menard D, Rabearimanana S, Hubert V, Bouchier C, Tichit M, Bras JL, Durand R, , 2010. Association of microsatellite variations of Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) gene with reduced in vitro susceptibility to quinine: lack of confirmation in clinical isolates from Africa. Am J Trop Med Hyg 82: 782787.[Crossref] [Google Scholar]
  71. Baliraine FN, Nsobya SL, Achan J, Tibenderana JK, Talisuna AO, Greenhouse B, Rosenthal PJ, , 2011. Limited ability of Plasmodium falciparum pfcrt, pfmdr1, and pfnhe1 polymorphisms to predict quinine in vitro sensitivity or clinical effectiveness in Uganda. Antimicrob Agents Chemother 55: 615622.[Crossref] [Google Scholar]
  72. Sinou V, Quang le H, Pelleau S, Huong VN, Huong NT, Tai le M, Bertaux L, Desbordes M, Latour C, Long LQ, Thanh NX, Parzy D, , 2011. Polymorphism of Plasmodium falciparum Na+/H+ exchanger is indicative of a low in vitro quinine susceptibility in isolates from Viet Nam. Malar J 10: 164.[Crossref] [Google Scholar]
  73. Nkrumah LJ, Riegelhaupt PM, Moura P, Johnson DJ, Patel J, Hayton K, Ferdig MT, Wellems TE, Akabas MH, Fidock DA, , 2009. Probing the multifactorial basis of Plasmodium falciparum quinine resistance: evidence for a strain-specific contribution of the sodium-proton exchanger PfNHE. Mol Biochem Parasitol 165: 122131.[Crossref] [Google Scholar]
  74. Hernandez T, Myatt AV, Coatney GR, Jeffery GM, , 1953. Studies in human malaria. XXXIV. Acquired resistance to pyrimethamine (Daraprim) by the Chesson strain of Plasmodium vivax . Am J Trop Med Hyg 2: 797804. [Google Scholar]
  75. Jones SA, , 1953. Experiment to determine if a proguanil-resistant strain of P. falciparum would respond to large doses of pyrimethamine. BMJ 1: 977.[Crossref] [Google Scholar]
  76. Ferraroni JJ, Hayes J, , 1979. Drug-resistant falciparum malaria among the Mayongong Indians in the Brazilian Amazon. Am J Trop Med Hyg 28: 909911. [Google Scholar]
  77. Nurse GT, , 1981. Fansidar-resistant falciparum malaria in Papua New Guinea. Lancet 1: 3637.[Crossref] [Google Scholar]
  78. Rumans LW, Dennis DT, Atmosoedjono S, , 1979. Fansidar resistant falciparum malaria in Indonesia. Lancet 2: 580581.[Crossref] [Google Scholar]
  79. Hurwitz ES, Johnson D, Campbell CC, , 1981. Resistance of Plasmodium falciparum malaria to sulfadoxine-pyrimethamine (‘Fansidar’) in a refugee camp in Thailand. Lancet 1: 10681070.[Crossref] [Google Scholar]
  80. Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ, , 1988. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum . Proc Natl Acad Sci USA 85: 91099113.[Crossref] [Google Scholar]
  81. Peterson DS, Walliker D, Wellems TE, , 1988. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85: 91149118.[Crossref] [Google Scholar]
  82. Nankoberanyi S, Mbogo GW, LeClair NP, Conrad MD, Tumwebaze P, Tukwasibwe S, Kamya MR, Tappero J, Nsobya SL, Rosenthal PJ, , 2014. Validation of the ligase detection reaction fluorescent microsphere assay for the detection of Plasmodium falciparum resistance mediating polymorphisms in Uganda. Malar J 13: 95.[Crossref] [Google Scholar]
  83. Roper C, Pearce R, Nair S, Sharp B, Nosten F, Anderson T, , 2004. Intercontinental spread of pyrimethamine-resistant malaria. Science 305: 1124.[Crossref] [Google Scholar]
  84. Lumb V, Das MK, Singh N, Dev V, Khan W, Sharma YD, , 2011. Multiple origins of Plasmodium falciparum dihydropteroate synthetase mutant alleles associated with sulfadoxine resistance in India. Antimicrob Agents Chemother 55: 28132817.[Crossref] [Google Scholar]
  85. Alifrangis M, Nag S, Schousboe ML, Ishengoma D, Lusingu J, Pota H, Kavishe RA, Pearce R, Ord R, Lynch C, Dejene S, Cox J, Rwakimari J, Minja DT, Lemnge MM, Roper C, , 2014. Independent origin of Plasmodium falciparum antifolate super-resistance, Uganda, Tanzania, and Ethiopia. Emerg Infect Dis 20: 12801286.[Crossref] [Google Scholar]
  86. Jain V, Basak S, Bhandari S, Bharti PK, Thomas T, Singh MP, Singh N, , 2014. Burden of complicated malaria in a densely forested Bastar region of Chhattisgarh State (central India). PLoS One 9: e115266.[Crossref] [Google Scholar]
  87. ter Kuile FO, van Eijk AM, Filler SJ, , 2007. Effect of sulfadoxine-pyrimethamine resistance on the efficacy of intermittent preventive therapy for malaria control during pregnancy: a systematic review. JAMA 297: 26032616.[Crossref] [Google Scholar]
  88. Konate AT, Yaro JB, Ouedraogo AZ, Diarra A, Gansane A, Soulama I, Kangoye DT, Kabore Y, Ouedraogo E, Ouedraogo A, Tiono AB, Ouedraogo IN, Chandramohan D, Cousens S, Milligan PJ, Sirima SB, Greenwood B, Diallo DA, , 2011. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bednet in Burkina Faso: a randomised, double-blind, placebo-controlled trial. PLoS Med 8: e1000408.[Crossref] [Google Scholar]
  89. Naidoo I, Roper C, , 2013. Mapping ‘partially resistant’, ‘fully resistant’, and ‘super resistant’ malaria. Trends Parasitol 29: 505515.[Crossref] [Google Scholar]
  90. Parikh S, Rosenthal PJ, , 2010. Intermittent preventive therapy for malaria in pregnancy: is sulfadoxine-pyrimethamine the right drug? Clin Pharmacol Ther 87: 160162.[Crossref] [Google Scholar]
  91. Miao M, Yang Z, Cui L, Ahlum J, Huang Y, Cui L, , 2010. Different allele prevalence in the dihydrofolate reductase and dihydropteroate synthase genes in Plasmodium vivax populations from China. Am J Trop Med Hyg 83: 12061211.[Crossref] [Google Scholar]
  92. Auliff A, Wilson DW, Russell B, Gao Q, Chen N, Anh le N, Maguire J, Bell D, O'Neil MT, Cheng Q, , 2006. Amino acid mutations in Plasmodium vivax dhfr and dhps from several geographical regions and susceptibility to antifolate drugs. Am J Trop Med Hyg 75: 617621. [Google Scholar]
  93. Prajapati SK, Joshi H, Dev V, Dua VK, , 2011. Molecular epidemiology of Plasmodium vivax anti-folate resistance in India. Malar J 10: 102.[Crossref] [Google Scholar]
  94. Ganguly S, Saha P, Chatterjee M, Maji AK, , 2014. Prevalence of polymorphisms in antifolate drug resistance molecular marker genes pvdhfr and pvdhps in clinical isolates of Plasmodium vivax from Kolkata, India. Antimicrob Agents Chemother 58: 196200.[Crossref] [Google Scholar]
  95. Wongsrichanalai C, Meshnick SR, , 2008. Declining artesunate-mefloquine efficacy against falciparum malaria on the Cambodia-Thailand border. Emerg Infect Dis 14: 716719.[Crossref] [Google Scholar]
  96. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, , 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.[Crossref] [Google Scholar]
  97. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ, , 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.[Crossref] [Google Scholar]
  98. Phyo AP, Nkhoma S, Stepniewska K, Ashley EA, Nair S, McGready R, ler Moo C, Al-Saai S, Dondorp AM, Lwin KM, Singhasivanon P, Day NP, White NJ, Anderson TJ, Nosten F, , 2012. Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379: 19601966.[Crossref] [Google Scholar]
  99. Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WR, Suon S, Mercereau-Puijalon O, Fairhurst RM, Menard D, , 2013. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13: 10431049.[Crossref] [Google Scholar]
  100. Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, Chy S, Duong S, Leang R, Ringwald P, Dondorp AM, Tripura R, Benoit-Vical F, Berry A, Gorgette O, Ariey F, Barale JC, Mercereau-Puijalon O, Menard D, , 2013. Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57: 914923.[Crossref] [Google Scholar]
  101. Chen N, Chavchich M, Peters JM, Kyle DE, Gatton ML, Cheng Q, , 2010. Deamplification of pfmdr1-containing amplicon on chromosome 5 in Plasmodium falciparum is associated with reduced resistance to artelinic acid in vitro. Antimicrob Agents Chemother 54: 33953401.[Crossref] [Google Scholar]
  102. Cui L, Wang Z, Miao J, Miao M, Chandra R, Jiang H, Su XZ, Cui L, , 2012. Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium falciparum . Mol Microbiol 86: 111128.[Crossref] [Google Scholar]
  103. Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, Al Saai S, Phyo AP, Moo CL, Lwin KM, McGready R, Ashley E, Imwong M, Stepniewska K, Yi P, Dondorp AM, Mayxay M, Newton PN, White NJ, Nosten F, Ferdig MT, Anderson TJ, , 2012. A major genome region underlying artemisinin resistance in malaria. Science 336: 7982.[Crossref] [Google Scholar]
  104. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, Fukuda MM, Nosten F, Noedl H, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Socheat D, Ariey F, Phyo AP, Starzengruber P, Fuehrer HP, Swoboda P, Stepniewska K, Flegg J, Arze C, Cerqueira GC, Silva JC, Ricklefs SM, Porcella SF, Stephens RM, Adams M, Kenefic LJ, Campino S, Auburn S, MacInnis B, Kwiatkowski DP, Su XZ, White NJ, Ringwald P, Plowe CV, , 2013. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in southeast Asia. Proc Natl Acad Sci USA 110: 240245.[Crossref] [Google Scholar]
  105. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Menard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Menard D, , 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.[Crossref] [Google Scholar]
  106. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ, Tracking Resistance to Artemisinin Collaboration, , 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423.[Crossref] [Google Scholar]
  107. Bosman P, Stassijns J, Nackers F, Canier L, Kim N, Khim S, Alipon SC, Chuor Char M, Chea N, Dysoley L, Van den Bergh R, Etienne W, De Smet M, Menard D, Kindermans JM, , 2014. Plasmodium prevalence and artemisinin-resistant falciparum malaria in Preah Vihear Province, Cambodia: a cross-sectional population-based study. Malar J 13: 394.[Crossref] [Google Scholar]
  108. Tun KM, Imwong M, Lwin KM, Win AA, Hlaing TM, Hlaing T, Lin K, Kyaw MP, Plewes K, Faiz MA, Dhorda M, Cheah PY, Pukrittayakamee S, Ashley EA, Anderson TJ, Nair S, McDew-White M, Flegg JA, Grist EP, Guerin P, Maude RJ, Smithuis F, Dondorp AM, Day NP, Nosten F, White NJ, Woodrow CJ, , 2015. Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker. Lancet Infect Dis 15: 415421.[Crossref] [Google Scholar]
  109. Saunders DL, Vanachayangkul P, Lon C, , 2014. Dihydroartemisinin-piperaquine failure in Cambodia. N Engl J Med 371: 484485.[Crossref] [Google Scholar]
  110. Conrad MD, Bigira V, Kapisi J, Muhindo M, Kamya MR, Havlir DV, Dorsey G, Rosenthal PJ, , 2014. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS One 9: e105690.[Crossref] [Google Scholar]
  111. Kamau E, Campino S, Amenga-Etego L, Drury E, Ishengoma D, Johnson K, Mumba D, Kekre M, Yavo W, Mead D, Bouyou-Akotet M, Apinjoh T, Golassa L, Randrianarivelojosia M, Andagalu B, Maiga-Ascofare O, Amambua-Ngwa A, Tindana P, Ghansah A, MacInnis B, Kwiatkowski D, Djimde AA, , 2014. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J Infect Dis 211: 13521355. [Google Scholar]
  112. Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, Tagbor H, Williams J, Bojang K, Njie F, Desai M, Kariuki S, Gutman J, Mathanga DP, Martensson A, Ngasala B, Conrad MD, Rosenthal PJ, Tshefu AK, Moormann AM, Vulule JM, Doumbo OK, Ter Kuile FO, Meshnick SR, Bailey JA, Juliano JJ, , 2014. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688.[Crossref] [Google Scholar]
  113. Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Menard D, Fidock DA, , 2014. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347: 428431.[Crossref] [Google Scholar]
  114. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NP, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z, , 2014. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347: 431435.[Crossref] [Google Scholar]
  115. Vaidya AB, Lashgari MS, Pologe LG, Morrisey J, , 1993. Structural features of Plasmodium cytochrome b that may underlie susceptibility to 8-aminoquinolines and hydroxynaphthoquinones. Mol Biochem Parasitol 58: 3342.[Crossref] [Google Scholar]
  116. Srivastava IK, Rottenberg H, Vaidya AB, , 1997. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272: 39613966.[Crossref] [Google Scholar]
  117. Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G, , 2002. Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malar J 1: 1.[Crossref] [Google Scholar]
  118. Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q, , 2000. Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44: 21002108.[Crossref] [Google Scholar]
  119. Wichmann O, Muehlen M, Gruss H, Mockenhaupt FP, Suttorp N, Jelinek T, , 2004. Malarone treatment failure not associated with previously described mutations in the cytochrome b gene. Malar J 3: 14.[Crossref] [Google Scholar]
  120. Musset L, Bouchaud O, Matheron S, Massias L, Le Bras J, , 2006. Clinical atovaquone-proguanil resistance of Plasmodium falciparum associated with cytochrome b codon 268 mutations. Microbes Infect 8: 25992604.[Crossref] [Google Scholar]
  121. Wichmann O, Muehlberger N, Jelinek T, Alifrangis M, Peyerl-Hoffmann G, Muhlen M, Grobusch MP, Gascon J, Matteelli A, Laferl H, Bisoffi Z, Ehrhardt S, Cuadros J, Hatz C, Gjorup I, McWhinney P, Beran J, da Cunha S, Schulze M, Kollaritsch H, Kern P, Fry G, Richter J, European Network on Surveillance of Imported Infectious Diseases; , 2004. Screening for mutations related to atovaquone/proguanil resistance in treatment failures and other imported isolates of Plasmodium falciparum in Europe. J Infect Dis 190: 15411546.[Crossref] [Google Scholar]
  122. Wang Y, Yang Z, Yuan L, Zhou G, Lee M-C, Fan Q, Xiao Y, Cao Y, Yan G, Cui L, , 2015. Clinical efficacy of dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria at the China-Myanmar border. Am J Trop Med Hyg 93: 577583.[Crossref] [Google Scholar]
  123. Achan J, Tibenderana JK, Kyabayinze D, Wabwire Mangen F, Kamya MR, Dorsey G, D'Alessandro U, Rosenthal PJ, Talisuna AO, , 2009. Effectiveness of quinine versus artemether-lumefantrine for treating uncomplicated falciparum malaria in Ugandan children: randomised trial. BMJ 339: b2763.[Crossref] [Google Scholar]
  124. Liang GL, Sun XD, Wang J, Zhang ZX, , 2009. Sensitivity of Plasmodium vivax to chloroquine in Laza City, Myanmar. Chin J Parasitol Parasitic Dis 27: 175176. [Google Scholar]
  125. Yuan L, Wang Y, Parker DM, Gupta B, Yang Z, Liu H, Fan Q, Cao Y, Xiao Y, Lee MC, Zhou G, Yan G, Baird JK, Cui L, , 2015. Therapeutic responses of Plasmodium vivax malaria to chloroquine and primaquine treatment in northeastern Myanmar. Antimicrob Agents Chemother 59: 12301235.[Crossref] [Google Scholar]
  126. Nsobya SL, Kiggundu M, Nanyunja S, Joloba M, Greenhouse B, Rosenthal PJ, , 2010. In vitro sensitivities of Plasmodium falciparum to different antimalarial drugs in Uganda. Antimicrob Agents Chemother 54: 12001206.[Crossref] [Google Scholar]
  127. Van Tyne D, Dieye B, Valim C, Daniels RF, Sene PD, Lukens AK, Ndiaye M, Bei AK, Ndiaye YD, Hamilton EJ, Ndir O, Mboup S, Volkman SK, Wirth DF, Ndiaye D, , 2013. Changes in drug sensitivity and anti-malarial drug resistance mutations over time among Plasmodium falciparum parasites in Senegal. Malar J 12: 441.[Crossref] [Google Scholar]
  128. Mungthin M, Khositnithikul R, Sitthichot N, Suwandittakul N, Wattanaveeradej V, Ward SA, Na-Bangchang K, , 2010. Association between the pfmdr1 gene and in vitro artemether and lumefantrine sensitivity in Thai isolates of Plasmodium falciparum . Am J Trop Med Hyg 83: 10051009.[Crossref] [Google Scholar]
  129. Ndiaye D, Patel V, Demas A, LeRoux M, Ndir O, Mboup S, Clardy J, Lakshmanan V, Daily JP, Wirth DF, , 2010. A non-radioactive DAPI-based high-throughput in vitro assay to assess Plasmodium falciparum responsiveness to antimalarials—increased sensitivity of P. falciparum to chloroquine in Senegal. Am J Trop Med Hyg 82: 228230.[Crossref] [Google Scholar]
  130. Wang Z, Parker D, Meng H, Wu L, Li J, Zhao Z, Zhang R, Fan Q, Wang H, Cui L, Yang Z, , 2012. In vitro sensitivity of Plasmodium falciparum from China-Myanmar border area to major ACT drugs and polymorphisms in potential target genes. PLoS One 7: e30927.[Crossref] [Google Scholar]
  131. Hao M, Jia D, Li Q, He Y, Yuan L, Xu S, Chen K, Wu J, Shen L, Sun L, Zhao H, Yang Z, Cui L, , 2013. In vitro sensitivities of Plasmodium falciparum isolates from the China-Myanmar border to piperaquine and association with polymorphisms in candidate genes. Antimicrob Agents Chemother 57: 17231729.[Crossref] [Google Scholar]
  132. Noedl H, Wongsrichanalai C, Wernsdorfer WH, , 2003. Malaria drug-sensitivity testing: new assays, new perspectives. Trends Parasitol 19: 175181.[Crossref] [Google Scholar]
  133. Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF, , 2014. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 137: 4457.[Crossref] [Google Scholar]
  134. Mbogo GW, Nankoberanyi S, Tukwasibwe S, Baliraine FN, Nsobya SL, Conrad MD, Arinaitwe E, Kamya M, Tappero J, Staedke SG, Dorsey G, Greenhouse B, Rosenthal PJ, , 2014. Temporal changes in prevalence of molecular markers mediating antimalarial drug resistance in a high malaria transmission setting in Uganda. Am J Trop Med Hyg 91: 5461.[Crossref] [Google Scholar]
  135. Yang Z, Li C, Miao M, Zhang Z, Sun X, Meng H, Li J, Fan Q, Cui L, , 2011. Multidrug-resistant genotypes of Plasmodium falciparum, Myanmar. Emerg Infect Dis 17: 498501.[Crossref] [Google Scholar]
  136. Bukirwa H, Yeka A, Kamya MR, Talisuna A, Banek K, Bakyaita N, Rwakimari JB, Rosenthal PJ, Wabwire-Mangen F, Dorsey G, Staedke SG, , 2006. Artemisinin combination therapies for treatment of uncomplicated malaria in Uganda. PLoS Clin Trials 1: e7.[Crossref] [Google Scholar]
  137. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, MacInnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ, , 2014. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371: 411423.[Crossref] [Google Scholar]
  138. Felger I, Beck HP, , 2008. Fitness costs of resistance to antimalarial drugs. Trends Parasitol 24: 331333.[Crossref] [Google Scholar]
  139. Hastings IM, Donnelly MJ, , 2005. The impact of antimalarial drug resistance mutations on parasite fitness, and its implications for the evolution of resistance. Drug Resist Updat 8: 4350.[Crossref] [Google Scholar]
  140. Rosenthal PJ, , 2013. The interplay between drug resistance and fitness in malaria parasites. Mol Microbiol 89: 10251038.[Crossref] [Google Scholar]
  141. Marks F, Evans J, Meyer CG, Browne EN, Flessner C, von Kalckreuth V, Eggelte TA, Horstmann RD, May J, , 2005. High prevalence of markers for sulfadoxine and pyrimethamine resistance in Plasmodium falciparum in the absence of drug pressure in the Ashanti region of Ghana. Antimicrob Agents Chemother 49: 11011105.[Crossref] [Google Scholar]
  142. Brown KM, Costanzo MS, Xu W, Roy S, Lozovsky ER, Hartl DL, , 2010. Compensatory mutations restore fitness during the evolution of dihydrofolate reductase. Mol Biol Evol 27: 26822690.[Crossref] [Google Scholar]
  143. Sandefur CI, Wooden JM, Quaye IK, Sirawaraporn W, Sibley CH, , 2007. Pyrimethamine-resistant dihydrofolate reductase enzymes of Plasmodium falciparum are not enzymatically compromised in vitro. Mol Biochem Parasitol 154: 15.[Crossref] [Google Scholar]
  144. Abdel-Muhsin AM, Mackinnon MJ, Ali E, Nassir el-KA, Suleiman S, Ahmed S, Walliker D, Babiker HA, , 2004. Evolution of drug-resistance genes in Plasmodium falciparum in an area of seasonal malaria transmission in eastern Sudan. J Infect Dis 189: 12391244.[Crossref] [Google Scholar]
  145. Preechapornkul P, Imwong M, Chotivanich K, Pongtavornpinyo W, Dondorp AM, Day NP, White NJ, Pukrittayakamee S, , 2009. Plasmodium falciparum pfmdr1 amplification, mefloquine resistance, and parasite fitness. Antimicrob Agents Chemother 53: 15091515.[Crossref] [Google Scholar]
  146. Temu EA, Kimani I, Tuno N, Kawada H, Minjas JN, Takagi M, , 2006. Monitoring chloroquine resistance using Plasmodium falciparum parasites isolated from wild mosquitoes in Tanzania. Am J Trop Med Hyg 75: 11821187. [Google Scholar]
  147. Oduola AM, Sowunmi A, Milhous WK, Kyle DE, Martin RK, Walker O, Salako LA, , 1992. Innate resistance to new antimalarial drugs in Plasmodium falciparum from Nigeria. Trans R Soc Trop Med Hyg 86: 123126.[Crossref] [Google Scholar]
  148. WHO, 1984. Advances in Malaria Chemotherapy. Report of a WHO Scientific Group. Geneva, Switzerland: World Health Organization. [Google Scholar]
  149. Hailemeskel E, Kassa M, Taddesse G, Mohammed H, Woyessa A, Tasew G, Sleshi M, Kebede A, Petros B, , 2013. Prevalence of sulfadoxine-pyrimethamine resistance-associated mutations in dhfr and dhps genes of Plasmodium falciparum three years after SP withdrawal in Bahir Dar, northwest Ethiopia. Acta Trop 128: 636641.[Crossref] [Google Scholar]
  150. Ndiaye M, Faye B, Tine R, Ndiaye JL, Lo A, Abiola A, Dieng Y, Ndiaye D, Hallett R, Alifrangis M, Gaye O, , 2012. Assessment of the molecular marker of Plasmodium falciparum chloroquine resistance (Pfcrt) in Senegal after several years of chloroquine withdrawal. Am J Trop Med Hyg 87: 640645.[Crossref] [Google Scholar]
  151. Mang'era CM, Mbai FN, Omedo IA, Mireji PO, Omar SA, , 2012. Changes in genotypes of Plasmodium falciparum human malaria parasite following withdrawal of chloroquine in Tiwi, Kenya. Acta Trop 123: 202207.[Crossref] [Google Scholar]
  152. Mita T, Kaneko A, Lum JK, Bwijo B, Takechi M, Zungu IL, Tsukahara T, Tanabe K, Kobayakawa T, Bjorkman A, , 2003. Recovery of chloroquine sensitivity and low prevalence of the Plasmodium falciparum chloroquine resistance transporter gene mutation K76T following the discontinuance of chloroquine use in Malawi. Am J Trop Med Hyg 68: 413415. [Google Scholar]
  153. Kublin JG, Cortese JF, Njunju EM, Mukadam RA, Wirima JJ, Kazembe PN, Djimde AA, Kouriba B, Taylor TE, Plowe CV, , 2003. Reemergence of chloroquine-sensitive Plasmodium falciparum malaria after cessation of chloroquine use in Malawi. J Infect Dis 187: 18701875.[Crossref] [Google Scholar]
  154. Thaithong S, Suebsaeng L, Rooney W, Beale GH, , 1988. Evidence of increased chloroquine sensitivity in Thai isolates of Plasmodium falciparum . Trans R Soc Trop Med Hyg 82: 3738.[Crossref] [Google Scholar]
  155. de Almeida A, Arez AP, Cravo PV, do Rosario VE, , 2009. Analysis of genetic mutations associated with anti-malarial drug resistance in Plasmodium falciparum from the Democratic Republic of East Timor. Malar J 8: 59.[Crossref] [Google Scholar]
  156. Frank M, Lehners N, Mayengue PI, Gabor J, Dal-Bianco M, Kombila DU, Ngoma GM, Supan C, Lell B, Ntoumi F, Grobusch MP, Dietz K, Kremsner PG, , 2011. A thirteen-year analysis of Plasmodium falciparum populations reveals high conservation of the mutant pfcrt haplotype despite the withdrawal of chloroquine from national treatment guidelines in Gabon. Malar J 10: 304.[Crossref] [Google Scholar]
  157. Kamugisha E, Bujila I, Lahdo M, Pello-Esso S, Minde M, Kongola G, Naiwumbwe H, Kiwuwa S, Kaddumukasa M, Kironde F, Swedberg G, , 2012. Large differences in prevalence of Pfcrt and Pfmdr1 mutations between Mwanza, Tanzania and Iganga, Uganda—a reflection of differences in policies regarding withdrawal of chloroquine? Acta Trop 121: 148151.[Crossref] [Google Scholar]
  158. Mwai L, Ochong E, Abdirahman A, Kiara SM, Ward S, Kokwaro G, Sasi P, Marsh K, Borrmann S, Mackinnon M, Nzila A, , 2009. Chloroquine resistance before and after its withdrawal in Kenya. Malar J 8: 106.[Crossref] [Google Scholar]
  159. McCollum AM, Mueller K, Villegas L, Udhayakumar V, Escalante AA, , 2007. Common origin and fixation of Plasmodium falciparum dhfr and dhps mutations associated with sulfadoxine-pyrimethamine resistance in a low-transmission area in South America. Antimicrob Agents Chemother 51: 20852091.[Crossref] [Google Scholar]
  160. Babiker HA, , 2009. Seasonal fluctuation of drug-resistant malaria parasites: a sign of fitness cost. Trends Parasitol 25: 351352.[Crossref] [Google Scholar]
  161. Babiker HA, Hastings IM, Swedberg G, , 2009. Impaired fitness of drug-resistant malaria parasites: evidence and implication on drug-deployment policies. Expert Rev Anti Infect Ther 7: 581593.[Crossref] [Google Scholar]
  162. Ord R, Alexander N, Dunyo S, Hallett R, Jawara M, Targett G, Drakeley CJ, Sutherland CJ, , 2007. Seasonal carriage of pfcrt and pfmdr1 alleles in Gambian Plasmodium falciparum imply reduced fitness of chloroquine-resistant parasites. J Infect Dis 196: 16131619.[Crossref] [Google Scholar]
  163. Ursing J, Kofoed PE, Rodrigues A, Rombo L, , 2009. No seasonal accumulation of resistant P. falciparum when high-dose chloroquine is used. PLoS One 4: e6866.[Crossref] [Google Scholar]
  164. Asih PB, Rogers WO, Susanti AI, Rahmat A, Rozi IE, Kusumaningtyas MA, Krisin Sekartuti Dewi RM, Coutrier FN, Sutamihardja A, van der Ven AJ, Sauerwein RW, Syafruddin D, , 2009. Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia. Malar J 8: 222.[Crossref] [Google Scholar]
  165. Mbacham WF, Evehe MS, Netongo PM, Ateh IA, Mimche PN, Ajua A, Nji AM, Irenee D, Echouffo-Tcheugui JB, Tawe B, Hallett R, Roper C, Targett G, Greenwood B, , 2010. Efficacy of amodiaquine, sulphadoxine-pyrimethamine and their combination for the treatment of uncomplicated Plasmodium falciparum malaria in children in Cameroon at the time of policy change to artemisinin-based combination therapy. Malar J 9: 34.[Crossref] [Google Scholar]
  166. Bhumiratana A, Intarapuk A, Sorosjinda-Nunthawarasilp P, Maneekan P, Koyadun S, , 2013. Border malaria associated with multidrug resistance on Thailand-Myanmar and Thailand-Cambodia borders: transmission dynamic, vulnerability, and surveillance. BioMed Res Int 2013: 363417.[Crossref] [Google Scholar]
  167. Lukens AK, Ross LS, Heidebrecht R, Javier Gamo F, Lafuente-Monasterio MJ, Booker ML, Hartl DL, Wiegand RC, Wirth DF, , 2014. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance. Proc Natl Acad Sci USA 111: 799804.[Crossref] [Google Scholar]
  168. Lelievre J, Berry A, Benoit-Vical F, , 2007. Artemisinin and chloroquine: do mode of action and mechanism of resistance involve the same protagonists? Curr Opin Investig Drugs 8: 117124. [Google Scholar]
  169. Sisowath C, Petersen I, Veiga MI, Martensson A, Premji Z, Bjorkman A, Fidock DA, Gil JP, , 2009. In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa. J Infect Dis 199: 750757.[Crossref] [Google Scholar]
  170. Froberg G, Jornhagen L, Morris U, Shakely D, Msellem MI, Gil JP, Bjorkman A, Martensson A, , 2012. Decreased prevalence of Plasmodium falciparum resistance markers to amodiaquine despite its wide scale use as ACT partner drug in Zanzibar. Malar J 11: 321.[Crossref] [Google Scholar]
  171. Tukwasibwe S, Mugenyi L, Mbogo GW, Nankoberanyi S, Maiteki-Sebuguzi C, Joloba ML, Nsobya SL, Staedke SG, Rosenthal PJ, , 2014. Differential prevalence of transporter polymorphisms in symptomatic and asymptomatic falciparum malaria infections in Uganda. J Infect Dis 210: 154157.[Crossref] [Google Scholar]
  172. Mharakurwa S, Sialumano M, Liu K, Scott A, Thuma P, , 2013. Selection for chloroquine-sensitive Plasmodium falciparum by wild Anopheles arabiensis in southern Zambia. Malar J 12: 453.[Crossref] [Google Scholar]
  173. Mharakurwa S, Kumwenda T, Mkulama MA, Musapa M, Chishimba S, Shiff CJ, Sullivan DJ, Thuma PE, Liu K, Agre P, , 2011. Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proc Natl Acad Sci USA 108: 1879618801.[Crossref] [Google Scholar]
  174. Mharakurwa S, , 2004. Plasmodium falciparum transmission rate and selection for drug resistance: a vexed association or a key to successful control? Int J Parasitol 34: 14831487.[Crossref] [Google Scholar]
  175. Mharakurwa S, Mutambu SL, Mudyiradima R, Chimbadzwa T, Chandiwana SK, Day KP, , 2004. Association of house spraying with suppressed levels of drug resistance in Zimbabwe. Malar J 3: 35.[Crossref] [Google Scholar]
  176. Al-Mekhlafi AM, Mahdy MA, Al-Mekhlafi HM, Azazy AA, Fong MY, , 2011. High frequency of Plasmodium falciparum chloroquine resistance marker (pfcrt T76 mutation) in Yemen: an urgent need to re-examine malaria drug policy. Parasit Vectors 4: 94.[Crossref] [Google Scholar]
  177. Alifrangis M, Lemnge MM, Ronn AM, Segeja MD, Magesa SM, Khalil IF, Bygbjerg IC, , 2003. Increasing prevalence of wildtypes in the dihydrofolate reductase gene of Plasmodium falciparum in an area with high levels of sulfadoxine/pyrimethamine resistance after introduction of treated bed nets. Am J Trop Med Hyg 69: 238243. [Google Scholar]
  178. Shah M, Kariuki S, Vanden Eng J, Blackstock AJ, Garner K, Gatei W, Gimnig JE, Lindblade K, Terlouw D, ter Kuile F, Hawley WA, Phillips-Howard P, Nahlen B, Walker E, Hamel MJ, Slutsker L, Shi YP, , 2011. Effect of transmission reduction by insecticide-treated bednets (ITNs) on antimalarial drug resistance in western Kenya. PLoS One 6: e26746.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0007
Loading
/content/journals/10.4269/ajtmh.15-0007
Loading

Data & Media loading...

Supplemental material

Supplemental material

  • Received : 02 Jan 2015
  • Accepted : 27 Apr 2015
  • Published online : 02 Sep 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error