1921
International Centers of Excellence for Malaria Research: Background, Progress, and Ongoing Activities
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Diagnosis is “the act of identifying a disease, illness, or problem by examining someone or something.” When an individual with acute fever presents for clinical attention, accurate diagnosis leading to specific, prompt treatment often saves lives. As applied to malaria, not only individual patient diagnosis is important but also assessing population-level malaria prevalence using appropriate diagnostic methods is essential for public health purposes. Similarly, identifying (diagnosing) fake antimalarial medications prevents the use of counterfeit drugs that can have disastrous effects. Therefore, accurate diagnosis in broad areas related to malaria is fundamental to improving health-care delivery, informing funding agencies of current malaria situations, and aiding in the prioritization of regional and national control efforts. The International Centers of Excellence for Malaria Research (ICEMR), supported by the U.S. National Institute of Allergy and Infectious Diseases, has collaborated on global efforts to improve malaria diagnostics by working to harmonize and systematize procedures across different regions where endemicity and financial resources vary. In this article, the different diagnostic methods used across each ICEMR are reviewed and challenges are discussed.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0004
2015-09-02
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/3_Suppl/99.html?itemId=/content/journals/10.4269/ajtmh.15-0004&mimeType=html&fmt=ahah

References

  1. Murphy SC, Shott JP, Parikh S, Etter P, Prescott WR, Stewart VA, , 2013. Malaria diagnostics in clinical trials. Am J Trop Med Hyg 89: 824839.[Crossref] [Google Scholar]
  2. WHO, 2010. Guidelines for the Treatment of Malaria, 2nd edition. Geneva, Switzerland: World Health Organization. [Google Scholar]
  3. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, Drakeley CJ, , 2012. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237.[Crossref] [Google Scholar]
  4. Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, Crudder C, Okell L, LaBarre P, , 2014. The essential role of infection-detection technologies for malaria elimination and eradication. Trends Parasitol 30: 259266.[Crossref] [Google Scholar]
  5. Bousema T, Okell L, Felger I, Drakeley C, , 2014. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol 12: 833840.[Crossref] [Google Scholar]
  6. Lin JT, Saunders DL, Meshnick SR, , 2014. The role of submicroscopic parasitemia in malaria transmission: what is the evidence? Trends Parasitol 30: 183190.[Crossref] [Google Scholar]
  7. Alonso PL, Tanner M, , 2013. Public health challenges and prospects for malaria control and elimination. Nat Med 19: 150155.[Crossref] [Google Scholar]
  8. Vasoo S, Pritt BS, , 2013. Molecular diagnostics and parasitic disease. Clin Lab Med 33: 461503.[Crossref] [Google Scholar]
  9. Imwong M, Hanchana S, Malleret B, Renia L, Day NP, Dondorp A, Nosten F, Snounou G, White NJ, , 2014. High-throughput ultrasensitive molecular techniques for quantifying low-density malaria parasitemias. J Clin Microbiol 52: 33033309.[Crossref] [Google Scholar]
  10. Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I, , 2015. Ultra-sensitive detection of Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med 12: e1001788.[Crossref] [Google Scholar]
  11. Oriero EC, Jacobs J, Van Geertruyden JP, Nwakanma D, D'Alessandro U, , 2015. Molecular-based isothermal tests for field diagnosis of malaria and their potential contribution to malaria elimination. J Antimicrob Chemother 70: 213.[Crossref] [Google Scholar]
  12. Paris DH, Imwong M, Faiz AM, Hasan M, Yunus EB, Silamut K, Lee SJ, Day NP, Dondorp AM, , 2007. Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria. Am J Trop Med Hyg 77: 972976. [Google Scholar]
  13. Abdul-Ghani R, Al-Mekhlafi AM, Karanis P, , 2012. Loop-mediated isothermal amplification (LAMP) for malarial parasites of humans: would it come to clinical reality as a point-of-care test? Acta Trop 122: 233240.[Crossref] [Google Scholar]
  14. Schoone GJ, Oskam L, Kroon NC, Schallig HD, Omar SA, , 2000. Detection and quantification of Plasmodium falciparum in blood samples using quantitative nucleic acid sequence-based amplification. J Clin Microbiol 38: 40724075. [Google Scholar]
  15. Mens PF, Schoone GJ, Kager PA, Schallig HD, , 2006. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification. Malar J 5: 80.[Crossref] [Google Scholar]
  16. Nayyar GM, Breman JG, Herrington JE, , 2015. The global pandemic of falsified medicines: laboratory and field innovations and policy perspectives. Am J Trop Med Hyg 92: 27.[Crossref] [Google Scholar]
  17. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, , 2014. Malaria. Lancet 383: 723735.[Crossref] [Google Scholar]
  18. Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ, , 2014. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis 14: 982991.[Crossref] [Google Scholar]
  19. WHO, 2012. World Malaria Report 2012. Geneva, Switzerland: World Health Organization. [Google Scholar]
  20. Baird JK, , 2011. Resistance to chloroquine unhinges vivax malaria therapeutics. Antimicrob Agents Chemother 55: 18271830.[Crossref] [Google Scholar]
  21. Douglas NM, Anstey NM, Angus BJ, Nosten F, Price RN, , 2010. Artemisinin combination therapy for vivax malaria. Lancet Infect Dis 10: 405416.[Crossref] [Google Scholar]
  22. Nayyar GM, Breman JG, Newton PN, Herrington J, , 2012. Poor-quality antimalarial drugs in southeast Asia and sub-Saharan Africa. Lancet Infect Dis 12: 488496.[Crossref] [Google Scholar]
  23. Karunamoorthi K, , 2014. The counterfeit anti-malarial is a crime against humanity: a systematic review of the scientific evidence. Malar J 13: 209.[Crossref] [Google Scholar]
  24. Koram KA, Molyneux ME, , 2007. When is “malaria” malaria? The different burdens of malaria infection, malaria disease, and malaria-like illnesses. Am J Trop Med Hyg 77: 15. [Google Scholar]
  25. Shanks GD, , 2012. Control and elimination of Plasmodium vivax . Adv Parasitol 80: 301341.[Crossref] [Google Scholar]
  26. Baird JK, , 2008. Real-world therapies and the problem of vivax malaria. N Engl J Med 359: 26012603.[Crossref] [Google Scholar]
  27. Ingram RJ, Crenna-Darusallam C, Soebianto S, Noviyanti R, Baird JK, , 2014. The clinical and public health problem of relapse despite primaquine therapy: case review of repeated relapses of Plasmodium vivax acquired in Papua New Guinea. Malar J 13: 488.[Crossref] [Google Scholar]
  28. Llanos-Cuentas A, Lacerda MV, Rueangweerayut R, Krudsood S, Gupta SK, Kochar SK, Arthur P, Chuenchom N, Mohrle JJ, Duparc S, Ugwuegbulam C, Kleim JP, Carter N, Green JA, Kellam L, , 2014. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet 383: 10491058.[Crossref] [Google Scholar]
  29. Lell B, Faucher JF, Missinou MA, Borrmann S, Dangelmaier O, Horton J, Kremsner PG, , 2000. Malaria chemoprophylaxis with tafenoquine: a randomised study. Lancet 355: 20412045.[Crossref] [Google Scholar]
  30. Kondrashin A, Baranova AM, Ashley EA, Recht J, White NJ, Sergiev VP, , 2014. Mass primaquine treatment to eliminate vivax malaria: lessons from the past. Malar J 13: 51.[Crossref] [Google Scholar]
  31. Poirot E, Skarbinski J, Sinclair D, Kachur SP, Slutsker L, Hwang J, , 2013. Mass drug administration for malaria. Cochrane Database Syst Rev 12: CD008846. [Google Scholar]
  32. Galappaththy GN, Tharyan P, Kirubakaran R, , 2013. Primaquine for preventing relapse in people with Plasmodium vivax malaria treated with chloroquine. Cochrane Database Syst Rev 10: CD004389. [Google Scholar]
  33. von Seidlein L, Auburn S, Espino F, Shanks D, Cheng Q, McCarthy J, Baird K, Moyes C, Howes R, Menard D, Bancone G, Winasti-Satyahraha A, Vestergaard LS, Green J, Domingo G, Yeung S, Price R, , 2013. Review of key knowledge gaps in glucose-6-phosphate dehydrogenase deficiency detection with regard to the safe clinical deployment of 8-aminoquinoline treatment regimens: a workshop report. Malar J 12: 112.[Crossref] [Google Scholar]
  34. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH, , 2007. A review of malaria diagnostic tools: microscopy and rapid diagnostic test (RDT). Am J Trop Med Hyg 77: 119127. [Google Scholar]
  35. Mayxay M, Pukrittayakamee S, Chotivanich K, Looareesuwan S, White NJ, , 2001. Persistence of Plasmodium falciparum HRP-2 in successfully treated acute falciparum malaria. Trans R Soc Trop Med Hyg 95: 179182.[Crossref] [Google Scholar]
  36. Iqbal J, Siddique A, Jameel M, Hira PR, , 2004. Persistent histidine-rich protein 2, parasite lactate dehydrogenase, and panmalarial antigen reactivity after clearance of Plasmodium falciparum monoinfection. J Clin Microbiol 42: 42374241.[Crossref] [Google Scholar]
  37. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN, , 1993. Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. Mol Biochem Parasitol 58: 283292.[Crossref] [Google Scholar]
  38. Mahajan B, Zheng H, Pham PT, Sedegah MY, Majam VF, Akolkar N, Rios M, Ankrah I, Madjitey P, Amoah G, Addison E, Quakyi IA, Kumar S, , 2012. Polymerase chain reaction-based tests for pan-species and species-specific detection of human Plasmodium parasites. Transfusion 52: 19491956.[Crossref] [Google Scholar]
  39. Mangold KA, Manson RU, Koay ES, Stephens L, Regner M, Thomson RB, Jr Peterson LR, Kaul KL, , 2005. Real-time PCR for detection and identification of Plasmodium spp. J Clin Microbiol 43: 24352440.[Crossref] [Google Scholar]
  40. Demas A, Oberstaller J, DeBarry J, Lucchi NW, Srinivasamoorthy G, Sumari D, Kabanywanyi AM, Villegas L, Escalante AA, Kachur SP, Barnwell JW, Peterson DS, Udhayakumar V, Kissinger JC, , 2011. Applied genomics: data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J Clin Microbiol 49: 24112418.[Crossref] [Google Scholar]
  41. Rantala AM, Taylor SM, Trottman PA, Luntamo M, Mbewe B, Maleta K, Kulmala T, Ashorn P, Meshnick SR, , 2010. Comparison of real-time PCR and microscopy for malaria parasite detection in Malawian pregnant women. Malar J 9: 269.[Crossref] [Google Scholar]
  42. WHO, 2009. Malaria Microscopy Quality Assurance Manual—Version 1. Geneva, Switzerland: World Health Organization. [Google Scholar]
  43. FIND, 2013. Malaria Rapid Diagnostic Test Performance—Results of WHO Product Testing of Malaria RDTs: Round 5. Geneva, Switzerland: World Health Organization. [Google Scholar]
  44. Henning L, Felger I, Beck HP, , 1999. Rapid DNA extraction for molecular epidemiological studies of malaria. Acta Trop 72: 149155.[Crossref] [Google Scholar]
  45. Foley M, Ranford-Cartwright LC, Babiker HA, , 1992. Rapid and simple method for isolating malaria DNA from fingerprick samples of blood. Mol Biochem Parasitol 53: 241244.[Crossref] [Google Scholar]
  46. FIND, 2012. Manual of Standard Operating Procedures for Malaria LAMP. Available at: http://www.finddiagnostics.org/export/sites/default/programs/malaria-afs/docs/SOPs_LAMP_Malaria_AUG12.pdf. [Google Scholar]
  47. Pillet S, Bourlet T, Pozzetto B, , 2012. Comparative evaluation of the QIAsymphony RGQ system with the easyMAG/R-gene combination for the quantitation of cytomegalovirus DNA load in whole blood. Virol J 9: 231.[Crossref] [Google Scholar]
  48. Gomes P, Carvalho AP, Diogo I, Goncalves F, Costa I, Cabanas J, Camacho RJ, , 2013. Comparison of the NucliSENS EasyQ HIV-1 v2.0 with Abbott m2000rt RealTime HIV-1 assay for plasma RNA quantitation in different HIV-1 subtypes. J Virol Methods 193: 1822.[Crossref] [Google Scholar]
  49. Kain KC, Lanar DE, , 1991. Determination of genetic variation within Plasmodium falciparum by using enzymatically amplified DNA from filter paper disks impregnated with whole blood. J Clin Microbiol 29: 11711174. [Google Scholar]
  50. Wooden J, Kyes S, Sibley CH, , 1993. PCR and strain identification in Plasmodium falciparum . Parasitol Today 9: 303305.[Crossref] [Google Scholar]
  51. Cox-Singh J, Mahayet S, Abdullah MS, Singh B, , 1997. Increased sensitivity of malaria detection by nested polymerase chain reaction using simple sampling and DNA extraction. Int J Parasitol 27: 15751577.[Crossref] [Google Scholar]
  52. Chaorattanakawee S, Natalang O, Hananantachai H, Nacher M, Brockman A, Krudsood S, Looareesuwan S, Patarapotikul J, , 2003. Storage duration and polymerase chain reaction detection of Plasmodium falciparum from blood spots on filter paper. Am J Trop Med Hyg 69: 4244. [Google Scholar]
  53. Mercier-Delarue S, Vray M, Plantier JC, Maillard T, Adjout Z, de Olivera F, Schnepf N, Maylin S, Simon F, Delaugerre C, , 2014. Higher specificity of nucleic acid sequence-based amplification isothermal technology than of real-time PCR for quantification of HIV-1 RNA on dried blood spots. J Clin Microbiol 52: 5256.[Crossref] [Google Scholar]
  54. Lofgren SM, Morrissey AB, Chevallier CC, Malabeja AI, Edmonds S, Amos B, Sifuna DJ, von Seidlein L, Schimana W, Stevens WS, Bartlett JA, Crump JA, , 2009. Evaluation of a dried blood spot HIV-1 RNA program for early infant diagnosis and viral load monitoring at rural and remote healthcare facilities. AIDS 23: 24592466.[Crossref] [Google Scholar]
  55. Bereczky S, Martensson A, Gil JP, Farnert A, , 2005. Short report: rapid DNA extraction from archive blood spots on filter paper for genotyping of Plasmodium falciparum . Am J Trop Med Hyg 72: 249251. [Google Scholar]
  56. Cnops L, Van Esbroeck M, Bottieau E, Jacobs J, , 2010. Giemsa-stained thick blood films as a source of DNA for Plasmodium species-specific real-time PCR. Malar J 9: 370.[Crossref] [Google Scholar]
  57. Cnops L, Boderie M, Gillet P, Van Esbroeck M, Jacobs J, , 2011. Rapid diagnostic tests as a source of DNA for Plasmodium species-specific real-time PCR. Malar J 10: 67.[Crossref] [Google Scholar]
  58. Mharakurwa S, Simoloka C, Thuma PE, Shiff CJ, Sullivan DJ, , 2006. PCR detection of Plasmodium falciparum in human urine and saliva samples. Malar J 5: 103.[Crossref] [Google Scholar]
  59. Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, , 1995. Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565568. [Google Scholar]
  60. Mlambo G, Vasquez Y, LeBlanc R, Sullivan D, Kumar N, , 2008. A filter paper method for the detection of Plasmodium falciparum gametocytes by reverse transcription polymerase chain reaction. Am J Trop Med Hyg 78: 114116. [Google Scholar]
  61. Corran PH, Cook J, Lynch C, Leendertse H, Manjurano A, Griffin J, Cox J, Abeku T, Bousema T, Ghani AC, Drakeley C, Riley E, , 2008. Dried blood spots as a source of anti-malarial antibodies for epidemiological studies. Malar J 7: 195.[Crossref] [Google Scholar]
  62. Moody A, , 2002. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15: 6678.[Crossref] [Google Scholar]
  63. Mouatcho JC, Goldring JP, , 2013. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 62: 14911505.[Crossref] [Google Scholar]
  64. Maltha J, Guiraud I, Lompo P, Kabore B, Gillet P, Van Geet C, Tinto H, Jacobs J, , 2014. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso. Malar J 13: 20.[Crossref] [Google Scholar]
  65. Gamboa D, Ho MF, Bendezu J, Torres K, Chiodini PL, Barnwell JW, Incardona S, Perkins M, Bell D, McCarthy J, Cheng Q, , 2010. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS One 5: e8091.[Crossref] [Google Scholar]
  66. Koita OA, Doumbo OK, Ouattara A, Tall LK, Konare A, Diakite M, Diallo M, Sagara I, Masinde GL, Doumbo SN, Dolo A, Tounkara A, Traore I, Krogstad DJ, , 2012. False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 86: 194198.[Crossref] [Google Scholar]
  67. Kumar N, Pande V, Bhatt RM, Shah NK, Mishra N, Srivastava B, Valecha N, Anvikar AR, , 2013. Genetic deletion of HRP2 and HRP3 in Indian Plasmodium falciparum population and false negative malaria rapid diagnostic test. Acta Trop 125: 119121.[Crossref] [Google Scholar]
  68. Wurtz N, Fall B, Bui K, Pascual A, Fall M, Camara C, Diatta B, Fall KB, Mbaye PS, Dieme Y, Bercion R, Wade B, Briolant S, Pradines B, , 2013. Pfhrp2 and pfhrp3 polymorphisms in Plasmodium falciparum isolates from Dakar, Senegal: impact on rapid malaria diagnostic tests. Malar J 12: 34.[Crossref] [Google Scholar]
  69. Houze S, Hubert V, Le Pessec G, Le Bras J, Clain J, , 2011. Combined deletions of pfhrp2 and pfhrp3 genes result in Plasmodium falciparum malaria false-negative rapid diagnostic test. J Clin Microbiol 49: 26942696.[Crossref] [Google Scholar]
  70. Mendoza NM, Cucunuba ZM, Aponte S, Gonzalez NE, Bernal SD, , 2013. Field evaluation for diagnostic accuracy of the rapid test SD Bioline Malaria Antigen Pf/Pv(R) in Colombia. Biomedica 33: 587597.[Crossref] [Google Scholar]
  71. Trouvay M, Palazon G, Berger F, Volney B, Blanchet D, Faway E, Donato D, Legrand E, Carme B, Musset L, , 2013. High performance of histidine-rich protein 2 based rapid diagnostic tests in French Guiana are explained by the absence of pfhrp2 gene deletion in P. falciparum . PLoS One 8: e74269.[Crossref] [Google Scholar]
  72. Newton PN, McGready R, Fernandez F, Green MD, Sunjio M, Bruneton C, Phanouvong S, Millet P, Whitty CJ, Talisuna AO, Proux S, Christophel EM, Malenga G, Singhasivanon P, Bojang K, Kaur H, Palmer K, Day NP, Greenwood BM, Nosten F, White NJ, , 2006. Manslaughter by fake artesunate in Asia—will Africa be next? PLoS Med 3: e197.[Crossref] [Google Scholar]
  73. Keoluangkhot V, Green MD, Nyadong L, Fernandez FM, Mayxay M, Newton PN, , 2008. Impaired clinical response in a patient with uncomplicated falciparum malaria who received poor-quality and underdosed intramuscular artemether. Am J Trop Med Hyg 78: 552555. [Google Scholar]
  74. Dondorp AM, Newton PN, Mayxay M, Van Damme W, Smithuis FM, Yeung S, Petit A, Lynam AJ, Johnson A, Hien TT, McGready R, Farrar JJ, Looareesuwan S, Day NP, Green MD, White NJ, , 2004. Fake antimalarials in southeast Asia are a major impediment to malaria control: multinational cross-sectional survey on the prevalence of fake antimalarials. Trop Med Int Health 9: 12411246.[Crossref] [Google Scholar]
  75. Vijaykadga S, Cholpol S, Sitthimongkol S, Pawaphutanan A, Pinyoratanachot A, Rojanawatsirivet C, Kovithvattanapong R, Thimasarn K, , 2006. Strengthening of national capacity in implementation of antimalarial drug quality assurance in Thailand. Southeast Asian J Trop Med Public Health 37 (Suppl 3): 510. [Google Scholar]
  76. Lon CT, Tsuyuoka R, Phanouvong S, Nivanna N, Socheat D, Sokhan C, Blum N, Christophel EM, Smine A, , 2006. Counterfeit and substandard antimalarial drugs in Cambodia. Trans R Soc Trop Med Hyg 100: 10191024.[Crossref] [Google Scholar]
  77. Rozendaal J, , 2001. Fake antimalaria drugs in Cambodia. Lancet 357: 890.[Crossref] [Google Scholar]
  78. Newton P, Proux S, Green M, Smithuis F, Rozendaal J, Prakongpan S, Chotivanich K, Mayxay M, Looareesuwan S, Farrar J, Nosten F, White NJ, , 2001. Fake artesunate in southeast Asia. Lancet 357: 19481950.[Crossref] [Google Scholar]
  79. Newton PN, Dondorp A, Green M, Mayxay M, White NJ, , 2003. Counterfeit artesunate antimalarials in southeast Asia. Lancet 362: 169.[Crossref] [Google Scholar]
  80. Hall KA, Newton PN, Green MD, De Veij M, Vandenabeele P, Pizzanelli D, Mayxay M, Dondorp A, Fernandez FM, , 2006. Characterization of counterfeit artesunate antimalarial tablets from southeast Asia. Am J Trop Med Hyg 75: 804811. [Google Scholar]
  81. Bate R, Coticelli P, Tren R, Attaran A, , 2008. Antimalarial drug quality in the most severely malarious parts of Africa—a six country study. PLoS One 3: e2132.[Crossref] [Google Scholar]
  82. Atemnkeng MA, De Cock K, Plaizier-Vercammen J, , 2007. Quality control of active ingredients in artemisinin-derivative antimalarials within Kenya and DR Congo. Trop Med Int Health 12: 6874. [Google Scholar]
  83. Amin AA, Kokwaro GO, , 2007. Antimalarial drug quality in Africa. J Clin Pharm Ther 32: 429440.[Crossref] [Google Scholar]
  84. Newton PN, Green MD, Mildenhall DC, Plancon A, Nettey H, Nyadong L, Hostetler DM, Swamidoss I, Harris GA, Powell K, Timmermans AE, Amin AA, Opuni SK, Barbereau S, Faurant C, Soong RC, Faure K, Thevanayagam J, Fernandes P, Kaur H, Angus B, Stepniewska K, Guerin PJ, Fernandez FM, , 2011. Poor quality vital anti-malarials in Africa—an urgent neglected public health priority. Malar J 10: 352.[Crossref] [Google Scholar]
  85. Ambroise-Thomas P, , 2012. The tragedy caused by fake antimalarial drugs. Mediterr J Hematol Infect Dis 4: e2012027.[Crossref] [Google Scholar]
  86. Newton PN, Fernandez FM, Plancon A, Mildenhall DC, Green MD, Ziyong L, Christophel EM, Phanouvong S, Howells S, McIntosh E, Laurin P, Blum N, Hampton CY, Faure K, Nyadong L, Soong CW, Santoso B, Zhiguang W, Newton J, Palmer K, , 2008. A collaborative epidemiological investigation into the criminal fake artesunate trade in south east Asia. PLoS Med 5: e32.[Crossref] [Google Scholar]
  87. Newton PN, Green MD, Fernandez F, , 2007. Counterfeit artemisinin derivatives and Africa: update from authors. PLoS Med 4: e139.[Crossref] [Google Scholar]
  88. He SP, Tan GY, Li G, Tan WM, Nan TG, Wang BM, Li ZH, Li QX, , 2009. Development of a sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the antimalaria active ingredient artemisinin in the Chinese herb Artemisia annua L. Anal Bioanal Chem 393: 12971303.[Crossref] [Google Scholar]
  89. Wang M, Cui Y, Zhou G, Yan G, Cui L, Wang B, , 2013. Validation of ELISA for quantitation of artemisinin-based antimalarial drugs. Am J Trop Med Hyg 89: 11221128.[Crossref] [Google Scholar]
  90. Guo S, Cui Y, He L, Zhang L, Cao Z, Zhang W, Zhang R, Tan G, Wang B, Cui L, , 2013. Development of a specific monoclonal antibody-based ELISA to measure the artemether content of antimalarial drugs. PLoS One 8: e79154.[Crossref] [Google Scholar]
  91. He L, Nan T, Cui Y, Guo S, Zhang W, Zhang R, Tan G, Wang B, Cui L, , 2014. Development of a colloidal gold-based lateral flow dipstick immunoassay for rapid qualitative and semi-quantitative analysis of artesunate and dihydroartemisinin. Malar J 13: 127.[Crossref] [Google Scholar]
  92. Lourens C, Watkins WM, Barnes KI, Sibley CH, Guerin PJ, White NJ, Lindegardh N, , 2010. Implementation of a reference standard and proficiency testing programme by the World Wide Antimalarial Resistance Network (WWARN). Malar J 9: 375.[Crossref] [Google Scholar]
  93. WHO, 2014. Technical Consultation to Update the WHO Malaria Microscopy Quality Assurance Manual. Geneva, Switzerland: World Health Organization. [Google Scholar]
  94. Padley DJ, Heath AB, Sutherland C, Chiodini PL, Baylis SA, , 2008. Establishment of the 1st World Health Organization International Standard for Plasmodium falciparum DNA for nucleic acid amplification technique (NAT)-based assays. Malar J 7: 139.[Crossref] [Google Scholar]
  95. Taylor SM, Mayor A, Mombo-Ngoma G, Kenguele HM, Ouedraogo S, Ndam NT, Mkali H, Mwangoka G, Valecha N, Singh JP, Clark MA, Verweij JJ, Adegnika AA, Severini C, Menegon M, Macete E, Menendez C, Cistero P, Njie F, Affara M, Otieno K, Kariuki S, ter Kuile FO, Meshnick SR, , 2014. A quality control program within a clinical trial consortium for PCR protocols to detect Plasmodium species. J Clin Microbiol 52: 21442149.[Crossref] [Google Scholar]
  96. Murphy SC, Hermsen CC, Douglas AD, Edwards NJ, Petersen I, Fahle GA, Adams M, Berry AA, Billman ZP, Gilbert SC, Laurens MB, Leroy O, Lyke KE, Plowe CV, Seilie AM, Strauss KA, Teelen K, Hill AV, Sauerwein RW, , 2014. External quality assurance of malaria nucleic acid testing for clinical trials and eradication surveillance. PLoS One 9: e97398.[Crossref] [Google Scholar]
  97. Alemayehu S, Feghali KC, Cowden J, Komisar J, Ockenhouse CF, Kamau E, , 2013. Comparative evaluation of published real-time PCR assays for the detection of malaria following MIQE guidelines. Malar J 12: 277.[Crossref] [Google Scholar]
  98. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, , 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611622.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0004
Loading
/content/journals/10.4269/ajtmh.15-0004
Loading

Data & Media loading...

  • Received : 02 Jan 2015
  • Accepted : 23 Jun 2015
  • Published online : 02 Sep 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error