1921
International Centers of Excellence for Malaria Research: Background, Progress, and Ongoing Activities
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Scale-up of the main vector control interventions, residual insecticides sprayed on walls or structures and/or impregnated in bed nets, together with prompt diagnosis and effective treatment, have led to a global reduction in malaria transmission. However, resistance in vectors to almost all classes of insecticides, particularly to the synthetic pyrethroids, is posing a challenge to the recent trend of declining malaria. Ten International Centers of Excellence for Malaria Research (ICEMR) located in the most malaria-endemic regions of the world are currently addressing insecticide resistance in the main vector populations, which not only threaten hope for elimination in malaria-endemic countries but also may lead to reversal where notable reductions in malaria have been documented. This communication illustrates the current status of insecticide resistance with a focus on the countries where activities are ongoing for 9 out of the 10 ICEMRs. Most of the primary malaria vectors in the ICEMR countries exhibit insecticide resistance, albeit of varying magnitude, and spanning all mechanisms of resistance. New alternatives to the insecticides currently available are still to be fully developed for deployment. Integrated vector management principles need to be better understood and encouraged, and viable insecticide resistance management strategies need to be developed and implemented.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.14-0844
2015-09-02
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/3_Suppl/69.html?itemId=/content/journals/10.4269/ajtmh.14-0844&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2013. World Malaria Report. Available at: http://www.who.int/malaria/publications/world_malaria_report_2013/en/. Accessed November 15, 2014. [Google Scholar]
  2. Davidson G, , 1957. Insecticide resistance in Anopheles sundaicus . Nature 180: 13331335.[Crossref] [Google Scholar]
  3. Corbel V, N'Guessen R, Manguin S, , 2013. Distribution, mechanisms, impact and management of insecticide resistance in malaria vectors: a pragmatic review. , ed. Anopheles Mosquitoes: New Insights into Malaria Vectors. InTechOpen, 579633. Available at: http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/distribution-mechanisms-impact-and-management-of-insecticide-resistance-in-malaria-vectors-a-pragmat. Accessed December 5, 2014. [Google Scholar]
  4. World Health Organization, 2013. Test Procedures for Monitoring Insecticide Resistance in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization. [Google Scholar]
  5. Centers for Disease Control, 2011. Guidelines for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Available at: www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_biassay_en.pdf. Accessed November 15, 2014. [Google Scholar]
  6. Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V, , 2011. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27: 9198.[Crossref] [Google Scholar]
  7. Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E, Kamuliwo M, Mukonka V, Baboo KS, Coleman M, , 2011. Insecticide resistance and the future of malaria control in Zambia. PLoS One 6: e24336.[Crossref] [Google Scholar]
  8. Norris LC, Norris DE, , 2011. Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of ITNs in Macha, Zambia. J Vector Ecol 36: 411420.[Crossref] [Google Scholar]
  9. Choi KS, Christian R, Nardini L, Wood OR, Agubuzo E, Muleba M, Munyati S, Makuwaza A, Koekemoer LL, Brooke BD, Hunt RH, Coetzee M, , 2014. Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe. Parasit Vectors 7: 464471.[Crossref] [Google Scholar]
  10. Namountougou M, Simard F, Baldet T, Diabaté A, Ouédraogo JB, Martin T, Dabiré RK, , 2012. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, west Africa. PLoS One 7: e48412. [Google Scholar]
  11. Okoye PN, Brooke BD, Koekemoer LL, Hunt RH, Coetzee M, , 2008. Characterisation of DDT, pyrethroid and carbamate resistance in Anopheles funestus from Obuasi, Ghana. Trans R Soc Trop Med Hyg 102: 591598. doi:10.1016/j.trstmh.2008.02.022.[Crossref] [Google Scholar]
  12. Chandre F, Darriet F, Manguin S, Brengues C, Carnevale P, Guillet P, , 1999. Pyrethroid cross resistance spectrum among populations of Anopheles gambiae s.s. from Cote d'Ivoire. J Am Mosq Control Assoc 15: 5359. [Google Scholar]
  13. Ndiath MO, Sougoufara S, Gaye A, Mazenot C, Konate L, Faye O, Sokhna C, Trape JF, , 2012. Resistance to DDT and pyrethroids and increased kdr mutation frequency in An. gambiae after the implementation of permethrin-treated nets in Senegal. PLoS One 7: e31943. [Google Scholar]
  14. Diabate A, Baldet T, Chandre F, Akoobeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small GJ, Hougard JM, , 2002. The role of agricultural use of insecticides in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67: 617622. [Google Scholar]
  15. Czeher C, Labbo R, Arzika I, Duchemin JB, , 2008. Evidence of increasing Leu-Phe knockdown resistance mutation in Anopheles gambiae from Niger following a nationwide long-lasting insecticide-treated nets implementation. Malar J 7: 189201.[Crossref] [Google Scholar]
  16. Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D, Donnelly MJ, , 2013. Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance. Med Vet Entomol 27: 276283.[Crossref] [Google Scholar]
  17. Ramphul U, Boase T, Bass C, Okedi LM, Donnelly MJ, Müller P, , 2009. Insecticide resistance and its association with target-site mutations in natural populations of Anopheles gambiae from eastern Uganda. Trans R Soc Trop Med Hyg 103: 11211126.[Crossref] [Google Scholar]
  18. Suárez MF, Quiñones ML, Palacios JD, Carrillo A, , 1990. First record of DDT resistance in Anopheles darlingi . J Am Mosq Control Assoc 6: 7274. [Google Scholar]
  19. Fonseca-Gonzalez I, Quiñones ML, McAllister J, Brogdon W, , 2009. Mixed-function oxidases and esterases associated with cross-resistance between DDT and lambda-cyhalothrin in Anopheles darlingi Root 1926 populations from Colombia. Mem Inst Oswaldo Cruz 104: 1826.[Crossref] [Google Scholar]
  20. Santacoloma L, Tibaduiza T, Gutierrez M, Brochero H, , 2012. Susceptibility to insecticides of Anopheles darlingi Root 1840, in two locations of the departments of Santander and Caquetá, Colombia. (in Spanish). Biomedica 32 (Suppl 1): 2228.[Crossref] [Google Scholar]
  21. Breeland SG, Kliewer JW, Austin JR, Miller CW, , 1970. Observations on malathion-resistant adults of Anopheles albimanus Wiedemann in coastal El Salvador. Bull World Health Organ 43: 627631. [Google Scholar]
  22. Caceres L, Rovira J, Garcia A, Torres R, , 2011. Determination of the resistance to organophosphate, carbamate, and pyrethroid insecticides in Panamanian Anopheles albimanus (Diptera:Culicidae) mosquitoes. Biomedica 31: 419427.[Crossref] [Google Scholar]
  23. Vargas F, Cordoba O, Alvarado A, , 2006. Determinación de la resistencia a insecticidas en Aedes aegypti, Anopheles albimanus y Lutzomyia peruensis procedentes del Norte Peruano. Rev Perú Med Exp Salud Publica 23: 259264. [Google Scholar]
  24. Fonseca-Gonzalez I, Cardenas R, Quiñones ML, McAllister J, Brogdon WG, , 2009. Pyrethroid and organophosphates resistance in Anopheles (N.) nuneztovari Gabaldon populations from malaria endemic areas in Colombia. Parasitol Res 105: 13991409.[Crossref] [Google Scholar]
  25. Hayes J, Calderon G, Falcon R, Zambrano V, , 1987. Newly incriminated anopheline vectors of human malaria parasites in Junin Department of Peru. J Am Mosq Control Assoc 3: 418422. [Google Scholar]
  26. Instituto Nacional de Salud. Insecticide Resistance Surveillance Network in Colombia. Available at: http://www.ins.gov.co/lineas-de-accion/Red-Nacional-Laboratorios/Paginas/entomologia.aspx. Accessed December 5, 2014. [Google Scholar]
  27. Instituto Nacional de Salud. Insecticide Resistance Surveillance Network in Peru. Available at: http://www.ins.gob.pe/portal/jerarquia/4/550/vigilancia-de-la-resistencia-de-los-vectores-a-los-insecticidas/jer.550. Accessed December 5, 2014. [Google Scholar]
  28. PAHO, 2012. Estrategia Para la Toma de Decisiones en el marco del Manejo Integrado de Vectores de Malaria (ED MIVM). Avalable at: http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=22926&Itemid=. Accessed December 5, 2014. [Google Scholar]
  29. Viera AJ, Garrett JM, , 2005. Understanding inter-observer agreement: the kappa statistic. Fam Med 37: 360363. [Google Scholar]
  30. Keven JB, Henry-Halldin CN, Thomsen EK, Mueller I, Siba PM, Zimmerman PA, Reimer LJ, , 2010. Short report: pyrethroid susceptibility in natural populations of the Anopheles punctulatus group (Diptera: Culicidae) in Papua New Guinea. Am J Trop Med Hyg 83: 12591261.[Crossref] [Google Scholar]
  31. Henry-Halldin C, Nadesakumaran K, Keven JB, Zimmerman AM, Siba Peter Mueller I, Hetzel MW, Kazura JW, Thomsen E, Reimer LJ, Zimmerman PA, , 2012. Multiplex assay for species identification and monitoring of insecticide resistance in Anopheles punctulatus group populations of Papua New Guinea. Am J Trop Med Hyg 86: 140151.[Crossref] [Google Scholar]
  32. Spencer T, Spencer M, Venters D, , 1974. Malaria vectors in Papua New Guinea. P N G Med J 17: 2230. [Google Scholar]
  33. Taylor B, , 1975. Changes in the feeding behavior of a malaria vector, Anopheles farauti Lav., following use of DDT as a residual spray in houses in the British Solomon Islands Protectorate. Trans R Ent Soc Lond 127: 277292.[Crossref] [Google Scholar]
  34. Russell TL, Beebe NW, Cooper RD, Lobo NF, Burkot TR, , 2013. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12: 5660.[Crossref] [Google Scholar]
  35. Raghavendra K, Barik TK, Sharma SK, Das MK, Dua VK, Pandey A, Ojha VP, Tiwari SN, Ghosh SK, Dash AP, , 2014. A note on the insecticide susceptibility status of principal malaria vector Anopheles culicifacies in four states of India. J Vector Borne Dis 51: 230234. [Google Scholar]
  36. Sahu SS, Gunasekaran K, Raju HK, Vanamail P, Pradhan MM, Jambulingam P, , 2014. Response of malaria vectors to conventional insecticides in the southern districts of Odisha State, India. Indian J Med Res 139: 294300. [Google Scholar]
  37. Mittal PK, Adak T, Subbarao SK, , 2002. Relative efficacy of five synthetic pyrethroids against four vector mosquitoes, Anopheles culicifacies, Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti . Indian J Malariol 39: 3438. [Google Scholar]
  38. Singh OP, Raghavendra K, Nanda N, Mittal PK, Subbarao SK, , 2002. Pyrethroid resistance in Anopheles culicifacies in Surat district, Gujarat, west India. Curr Sci 82: 547550. [Google Scholar]
  39. Mishra AK, Chand SK, Barik TK, Dua VK, Raghavendra K, , 2012. Insecticide resistance status in Anopheles culicifacies in Madhya Pradesh, central India. J Vector Borne Dis 49: 3941. [Google Scholar]
  40. Bhatt RM, Sharma SN, Barik TK, Raghavendra K, , 2012. Status of insecticide resistance in malaria vector, Anopheles culicifacies in Chhattisgarh state, India. J Vector Borne Dis 49: 3638. [Google Scholar]
  41. Thavaselvam D, Kumar A, Sumodan PK, , 1993. Insecticide susceptibility status of Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti in Panaji, Goa. Indian J Malariol 30: 7579. [Google Scholar]
  42. Tikara SN, Mendki MJ, Sharma AK, Sukumaran D, Veer V, Prakash S, Parashar BD, , 2011. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci 11: 85. [Google Scholar]
  43. Ansari MA, Mittal PK, Razdan RK, Dhiman RC, Kumar A, , 2004. Evaluation of pirimiphos-methyl (50% EC) against the immatures of Anopheles stephensi/An. culicifacies (malaria vectors) and Culex quinquefasciatus (vector of bancroftian filariasis). J Vector Borne Dis 41: 1016. [Google Scholar]
  44. Tiwari S, Ghosh SK, Ojha VP, Dash AP, Raghavendra K, , 2010. Susceptibility to selected synthetic pyrethroids in urban malaria vector Anopheles stephensi: a case study in Mangalore city, south India. Malar J 9: 179183.[Crossref] [Google Scholar]
  45. Kumar A, Chery L, Biswas C, Dubhashi N, Dutta P, Dua VK, Kacchap M, Kakati S, Khandeparkar A, Kour D, Mahajan SN, Maji A, Majumder P, Mohanta J, Mohapatra PK, Narayanasamy K, Roy K, Shastri J, Valecha N, Vikash R, Wani R, White J, Rathod PK, , 2012. Malaria in south Asia: prevalence and control. Acta Trop 121: 246255.[Crossref] [Google Scholar]
  46. Chareonviriyaphap T, Bangs MJ, Ratanatham S, , 2000. Status of malaria in Thailand. Southeast Asian J Trop Med Public Health 31: 225237. [Google Scholar]
  47. Sexton JD, , 1994. Impregnated bed nets for malaria control: biological success and social responsibility. Am J Trop Med Hyg 50 (Suppl): 7281. [Google Scholar]
  48. Overgaard HJ, Sandve SR, Suwonkerd W, , 2005. Evidence of anopheline mosquito resistance to agrochemicals in northern Thailand. Southeast Asian J Trop Med Public Health 36 (Suppl 4): 152157. [Google Scholar]
  49. Van Bortel W, Trung HD, Thuan LK, Sochantha T, Socheat D, Sumrandee C, Baimai V, Keokenchanh K, Samlane P, Roelants P, Denis L, Verhaeghen K, Obsomer V, Coosemans M, , 2008. The insecticide resistance status of malaria vectors in the Mekong region. Malar J 7: 102117.[Crossref] [Google Scholar]
  50. Cui F, Raymond M, Qiao CL, , 2006. Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 62: 10131022.[Crossref] [Google Scholar]
  51. Wang DQ, Xia ZG, Zhou SS, Zhou XN, Wang RB, Zhang QF, , 2013. A potential threat to malaria elimination: extensive deltamethrin and DDT resistance to Anopheles sinensis from the malaria-endemic areas in China. Malar J 12: 164169.[Crossref] [Google Scholar]
  52. Chang X, Zhong D, Fang Q, Hartsel J, Zhou G, Shi L, Fang F, Zhu C, Yan G, , 2014. Multiple resistances and complex mechanisms of Anopheles sinensis mosquito: a major obstacle to mosquito-borne diseases control and elimination in China. PLoS Negl Trop Dis 8: e2889.[Crossref] [Google Scholar]
  53. Silva AP, Santos JM, Martins AJ, , 2014. Mutations in the voltage-gated sodium channel gene of anophelines and their association with resistance to pyrethroids: a review. Parasit Vectors 7: 450464.[Crossref] [Google Scholar]
  54. Sharma RS, , 1999. Susceptibility of the malaria vector Anopheles culicifacies (Diptera: Culicidae) to DDT, dieldrin, malathion, and lambda-cyhalothrin. J Vector Ecol 24: 187190. [Google Scholar]
  55. Sharma VP, , 2012. Continuing challenge of malaria in India. Curr Sci 102: 678682. [Google Scholar]
  56. World Health Organization. World Health Organization Position Statement on Integrated Vector Management. Available at: http://whqlibdoc.who.int/hq/2008/WHO_HTM_NTD_VEM_2008.2_eng.pdf. Accessed November 23, 2014. [Google Scholar]
  57. World Health Organization, 2012. GPIRM: Global Plan for Insecticide Resistance Management. Available at: http://www.who.int/malaria/publications/atoz/gpirm/en/. Accessed November 15, 2014. [Google Scholar]
  58. Shililu J, Mbogo C, Ghebremeskel T, Githure J, Novak R, , 2007. Mosquito larval habitats in a semiarid ecosystem in Eritrea: impact of larval habitat management on Anopheles arabiensis population. Am J Trop Med Hyg 76: 103110. [Google Scholar]
  59. Chanon KE, Méndez-Galván JF, Galindo-Jaramillo JM, Olguín-Bernal H, Borja-Aburto VH, , 2003. Cooperative actions to achieve malaria control without the use of DDT. Int J Hyg Environ Health 206: 387394.[Crossref] [Google Scholar]
  60. Bond JG, Rojas JC, Arredondo-Jiménez JI, Quiroz-Martínez H, Valle J, Williams T, , 2004. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation. Proc Biol Sci 271: 21612169.[Crossref] [Google Scholar]
  61. World Health Organization, 2012. Interim position statement: the role of larviciding for malaria control in sub-Saharan Africa. Geneva, Switzerland: WHO. Available at: www.who.int/entity/malaria/publications/atoz/larviciding_position_statement/en/. Accessed December 5, 2014.
  62. Duchet C, Allan R, Carnevale P, Manguin S, , 2013. Vector control: some new paradigms and approaches. , ed. Anopheles Mosquitoes: New Insights into Malaria Vectors. InTechOpen. 705753. Available at: http://www.intechopen.com/books/anopheles-mosquitoes-new-insights-into-malaria-vectors/vector-control-some-new-paradigms-and-approaches. Accessed December 2, 2014. [Google Scholar]
  63. Toeì KH, Jones CM, N'Fale S, Ismail HM, Dabireì RK, Ranson H, , 2014. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis 20: 16911696.[Crossref] [Google Scholar]
  64. Durnez L, Mao S, Denis L, Roelants P, Sochantha T, Coosemans M, , 2013. Outdoor malaria transmission in forested villages of Cambodia. Malar J 12: 329343.[Crossref] [Google Scholar]
  65. Conn JE, Norris DE, Donnelly MJ, Beebe NW, Burkot TR, Coulibaly MB, Chery C, Eapen A, Keven JB, Kilama M, Kumar A, Lindsay SW, Moreno M, Quinones M, Reimer LJ, Russell TL, Smith DL, Thomas MB, Walker ED, Wilson ML, Yan G, , 2015. Entomological monitoring and evaluation in the drive to malaria elimination: diverse transmission settings of ICEMR projects guide elimination strategies. Am J Trop Med Hyg 93 (Suppl): 2841. [Google Scholar]
  66. Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, Gatakaa H, Githure J, Borgemeister C, Keating J, Beier JC, , 2013. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J 12: 1321.[Crossref] [Google Scholar]
  67. Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, Slotman MA, , 2011. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10: 184194.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0844
Loading
/content/journals/10.4269/ajtmh.14-0844
Loading

Data & Media loading...

  • Received : 30 Dec 2014
  • Accepted : 30 Apr 2015
  • Published online : 02 Sep 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error