Volume 92, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



West Nile virus (WNV) is a leading cause of mosquito-borne disease in the United States. Annual seasonal outbreaks vary in size and location. Predicting where and when higher than normal WNV transmission will occur can help direct limited public health resources. We developed models for the contiguous United States to identify meteorological anomalies associated with above average incidence of WNV neuroinvasive disease from 2004 to 2012. We used county-level WNV data reported to ArboNET and meteorological data from the North American Land Data Assimilation System. As a result of geographic differences in WNV transmission, we divided the United States into East and West, and 10 climate regions. Above average annual temperature was associated with increased likelihood of higher than normal WNV disease incidence, nationally and in most regions. Lower than average annual total precipitation was associated with higher disease incidence in the eastern United States, but the opposite was true in most western regions. Although multiple factors influence WNV transmission, these findings show that anomalies in temperature and precipitation are associated with above average WNV disease incidence. Readily accessible meteorological data may be used to develop predictive models to forecast geographic areas with elevated WNV disease risk before the coming season.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Centers for Disease Control and Prevention, 2013. West Nile Virus Statistics and Maps. Available at: http://www.cdc.gov/westnile/statsMaps/. Accessed April 3, 2014. [Google Scholar]
  2. Mostashari F, Bunning ML, Kitsutani PT, Singer DA, Nash D, Cooper MJ, Katz N, Liljebjelke KA, Biggerstaff BJ, Fine AD, Layton MC, Mullin SM, Johnson AJ, Martin DA, Hayes EB, Campbell GL, , 2001. Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358: 261264.[Crossref] [Google Scholar]
  3. Busch MP, Wright DJ, Custer B, Tobler LH, Stramer SL, Kleinman SH, Prince HE, Bianco C, Foster G, Petersen LR, Nemo G, Glynn SA, , 2006. West Nile virus infections projected from blood donor screening data, 2003. Emerg Infect Dis 12: 395402.[Crossref] [Google Scholar]
  4. Zou S, Foster GA, Dodd RY, Petersen LR, Stramer SL, , 2010. West Nile fever characteristics among viremic persons Identified through blood donor screening. J Infect Dis 202: 13541361.[Crossref] [Google Scholar]
  5. Carson PJ, Borchardt SM, Custer B, Prince HE, Dunn-Williams J, Winkelman V, Tobler L, Biggerstaff BJ, Lanciotti R, Petersen LR, Busch MP, , 2012. Neuroinvasive disease and West Nile virus infection, North Dakota, USA, 1999–2008. Emerg Infect Dis 18: 684686.[Crossref] [Google Scholar]
  6. Nash D, Mostashari F, Fine A, Miller J, O'Leary D, Murray K, Huang A, Rosenberg A, Greenberg A, Sherman M, Wong S, Layton M, , 2001. The outbreak of West Nile virus infection in the New York City area in 1999. N Engl J Med 344: 18071814.[Crossref] [Google Scholar]
  7. Lindsey NP, Staples JE, Lehman J, Fischer M, , 2010. Surveillance for human West Nile Virus disease—United States, 1999–2008. MMWR Surveill Summ 59: 117. [Google Scholar]
  8. Centers for Disease Control and Prevention, 2013. West Nile virus and other arboviral diseases—United States, 2012. MMWR Morb Mortal Wkly Rep 62: 513517. [Google Scholar]
  9. Lindsey NP, Staples JE, Delorey MJ, Fischer M, , 2014. Lack of evidence of increased West Nile virus disease severity in the United States in 2012. Am J Trop Med Hyg 90: 163168.[Crossref] [Google Scholar]
  10. Beasley DWC, , 2011. Vaccines and immunotherapeutics for the prevention and treatment of infections with West Nile virus. Immunotherapy 3: 269285.[Crossref] [Google Scholar]
  11. Petersen LR, Brault AC, Nasci RS, , 2013. West Nile virus: review of the literature. JAMA 310: 308315.[Crossref] [Google Scholar]
  12. Komar N, , 2003. West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61: 185234.[Crossref] [Google Scholar]
  13. Centers for Disease Control and Prevention, 2014. ArboNET Database. Available at: http://www.cdc.gov/westnile/resourcepages/survResources.html. Accessed May 6, 2014. [Google Scholar]
  14. U.S. Census Bureau, 2014. U.S. Census Population Estimates. Available at: http://www.census.gov/popest/. Accessed May 6, 2014. [Google Scholar]
  15. Abdi H, Salkind N, , 2007. Z-scores. , ed. Encyclopedia of Measurement and Statistics. Thousand Oaks, CA: Sage. [Google Scholar]
  16. Xia Y, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo L, Alonge C, Wei H, Meng J, Livneh B, Lettenmaier D, Koren V, Duan Q, Mo K, Fan Y, Mocko D, , 2012. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J Geophys Res 117: D03109. [Google Scholar]
  17. Cosgrove B, Lohmann D, Mitchell K, Houser P, Wood E, Schaake J, Robock A, Marshall C, Sheffield J, Duan Q, Luo L, Higgins R, Pinker R, Tarpley J, Meng J, , 2003. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J Geophys Res 108: 8842.[Crossref] [Google Scholar]
  18. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA, , 2004. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109: D07S90. [Google Scholar]
  19. Cunfer G, , 2005. On the Great Plains: Agriculture and Environment. College Station, TX: Texas A&M University Press, 304. [Google Scholar]
  20. Reisen W, , 1993. The western encephalitis mosquito, Culex tarsalis . Wing Beats 4: 16. [Google Scholar]
  21. Faanes C, Lingle G, , 1995. Biogeographic distribution of breeding birds. Breed. Birds Platte River Valley Nebraska. Available at: http://www.npwrc.usgs.gov/resource/birds/platte/distrib.htm. Accessed August 1, 2014. [Google Scholar]
  22. National Oceanic and Atmospheric Administration, 2014. NOAA Climate Regions. Available at: http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php. Accessed May 12, 2014. [Google Scholar]
  23. Twisk JW, , 2003. Applied Longitudinal Data Analysis for Epidemiology: A Practical Guide. Cambridge, UK: Cambridge University Press, 5775. [Google Scholar]
  24. Fielding A, Bell J, , 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 3849.[Crossref] [Google Scholar]
  25. Chung WM, Buseman CM, Joyner SN, Hughes SM, Fomby TB, Luby JP, Haley RW, , 2013. The 2012 West Nile encephalitis epidemic in Dallas, Texas. JAMA 310: 297307.[Crossref] [Google Scholar]
  26. Manore CA, Davis J, Christofferson RC, Wesson D, Hyman JM, Christopher N, , 2014. Towards an early warning system for forecasting human West Nile virus incidence. PLoS Curr 6. [Google Scholar]
  27. Winters AM, Eisen RJ, Lozano-Fuentes S, Moore CG, Creek C, South D, , 2009. Predictive spatial models for risk of West Nile virus exposure in eastern and western Colorado. Am J Trop Med Hyg 79: 581590. [Google Scholar]
  28. Wimberly MC, Lamsal A, Giacomo P, Chuang T, , 2014. Regional variation of climatic influences on West Nile virus outbreaks in the United States. Am J Trop Med Hyg 91: 677684.[Crossref] [Google Scholar]
  29. Gardner AM, Hamer GL, Hines AM, Christina M, Walker ED, Ruiz MO, Newman CM, , 2012. Weather variability affects abundance of larval Culex (Diptera: Culicidae) in storm water catch basins in suburban Chicago. J Med Entomol 49: 270276.[Crossref] [Google Scholar]
  30. Chuang T, Knepper RG, Stanuszek WW, Edward D, Wilson ML, , 2011. Temporal and spatial patterns of West Nile virus transmission in Saginaw County, Michigan, 2003–2006. J Med Entomol 48: 10471056.[Crossref] [Google Scholar]
  31. Chuang T, Hildreth MB, Vanroekel DL, Wimberly MC, , 2011. Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota. J Med Entomol 48: 669679.[Crossref] [Google Scholar]
  32. Pecoraro HL, Day HL, Reineke R, Stevens N, Withey JC, John M, Meschke JS, Marzluff JM, , 2007. Climatic and landscape correlates for potential West Nile virus mosquito vectors in the Seattle region. J Vector Ecol 32: 2228.[Crossref] [Google Scholar]
  33. Reisen WK, Cayan D, Tyree M, Barker CM, Eldridge B, Dettinger M, , 2008. Impact of climate variation on mosquito abundance in California. J Vector Ecol 33: 8998.[Crossref] [Google Scholar]
  34. Nasci RS, Savage HM, White DJ, Miller JR, Cropp BC, Godsey MS, Kerst AJ, Bennett P, Gottfried K, Lanciotti RS, , 2001. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg Infect Dis 7: 742744.[Crossref] [Google Scholar]
  35. Hawley W, Pumpuni C, Brady R, Craig G, , 1989. Overwintering survival of Aedes albopictus (Diptera: Culicidae) eggs in Indiana. J Med Entomol 26: 122129.[Crossref] [Google Scholar]
  36. Reisen WK, Fang Y, Martinez VM, , 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43: 309317.[Crossref] [Google Scholar]
  37. Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD, , 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 3: 116.[Crossref] [Google Scholar]
  38. Both C, Bouwhuis S, Lessells CM, Visser ME, , 2006. Climate change and population declines in a long-distance migratory bird. Nature 441: 8183.[Crossref] [Google Scholar]
  39. Marra PP, Francis CM, Mulvihill RS, Moore FR, , 2005. The influence of climate on the timing and rate of spring bird migration. Oecologia 142: 307315.[Crossref] [Google Scholar]
  40. Hamer GL, Walker ED, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Schotthoefer AM, Brown WM, Wheeler E, Kitron UD, , 2008. Rapid amplification of West Nile virus: the role of hatch-year birds. Vector Borne Zoonotic Dis 8: 5767.[Crossref] [Google Scholar]
  41. Kilpatrick M, Daszak P, Jones MJ, Marra PP, Kramer LD, , 2006. Host heterogeneity dominates West Nile virus transmission. Proc R Soc B Biol Sci 273: 23272333.[Crossref] [Google Scholar]
  42. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, , 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606610.[Crossref] [Google Scholar]
  43. Swaddle JP, Calos SE, , 2008. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS ONE 3: e2488.[Crossref] [Google Scholar]
  44. U.S. Census Bureau, 2010. Census Urban and Rural Classification and Urban Area Criteria. Available at: https://www.census.gov/geo/maps-data/maps/pdfs/thematic/2010ua/UA2010_UAs_and_UCs_Map.pdf. Accessed June 18, 2014. [Google Scholar]
  45. Darsie R, Ward R, , 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida. [Google Scholar]
  46. Eisen L, Barker CM, Moore CG, Pape WJ, Winters AM, Cheronis N, , 2010. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of North Central Colorado. J Med Entomol 47: 939951.[Crossref] [Google Scholar]
  47. Reiskind MH, Wilson ML, , 2004. Culex restuans (Diptera: Culicidae) oviposition behavior determined by larval habitat quality and quantity in southeastern Michigan. J Med Entomol 41: 179186.[Crossref] [Google Scholar]
  48. Weinstein P, Laird M, Browne G, , 1997. Exotic and Endemic Mosquitoes in New Zealand as Potential Arbovirus Vectors. Wellington: Ministry of Health. [Google Scholar]
  49. Bowden SE, Magori K, Drake JM, , 2011. Regional differences in the association between land cover and West Nile virus disease incidence in humans in the United States. Am J Trop Med Hyg 84: 234238.[Crossref] [Google Scholar]
  50. NOAA National Climatic Data Center, 2012. State of the Climate: National Overview for Annual 2012. Available at: http://www.ncdc.noaa.gov/sotc/national/2012/13. Accessed September 16, 2014. [Google Scholar]
  51. Shaman J, Day JF, Komar N, , 2010. Hydrologic conditions describe West Nile virus risk in Colorado. Int J Environ Res Public Health 7: 494508.[Crossref] [Google Scholar]
  52. Ezenwa VO, Milheim LE, Coffey MF, Godsey MS, King RJ, Guptill SC, , 2007. Land cover variation and West Nile virus prevalence: patterns, processes, and implications for disease control. Vector Borne Zoonotic Dis 7: 173180.[Crossref] [Google Scholar]
  53. Bradley CA, Gibbs SE, Altizer S, , 2013. Urban land use predicts West Nile virus exposure in songbirds. Ecol Appl 18: 10831092.[Crossref] [Google Scholar]
  54. Brown HE, Childs JE, Diuk-Wasser MA, Fish D, , 2008. Ecological factors associated with West Nile virus transmission, northeastern United States. Emerg Infect Dis 14: 15391545.[Crossref] [Google Scholar]
  55. Chuang T-W, Wimberly MC, , 2012. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States. PLoS ONE 7: e46882.[Crossref] [Google Scholar]
  56. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS, , 2010. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468: 647652.[Crossref] [Google Scholar]
  57. Diuk-Wasser MA, Molaei G, Simpson JE, Keefe CMF, Armstrong PM, Andreadis TG, , 2010. Avian communal roosts as amplification foci for West Nile virus in urban areas in northeastern United States. Am J Trop Med Hyg 82: 337343.[Crossref] [Google Scholar]
  58. Gibney KB, Colborn J, Baty S, Bunko Patterson AM, Sylvester T, Briggs G, Stewart T, Levy C, Komatsu K, MacMillan K, Delorey MJ, Mutebi J-P, Fischer M, Staples JE, , 2012. Modifiable risk factors for West Nile virus infection during an outbreak—Arizona, 2010. Am J Trop Med Hyg 86: 895901.[Crossref] [Google Scholar]
  59. Ruiz MO, Tedesco C, McTighe TJ, Austin C, Kitron U, , 2004. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area, 2002. Int J Health Geogr 3: 8.[Crossref] [Google Scholar]
  60. Reisen WK, Takahashi RM, Carroll BD, Quiring R, , 2008. Delinquent mortgages, neglected swimming pools, and West Nile virus, California. Emerg Infect Dis 14: 17471749.[Crossref] [Google Scholar]
  61. Aquino M, Fyfe M, Macdougall L, Remple V, , 2004. West Nile virus in British Columbia. Emerg Infect Dis 10: 14991501.[Crossref] [Google Scholar]
  62. Elliott S, Loeb M, Harrington D, Eyles J, , 2008. Heeding the message? Determinants of risk behaviors for West Nile virus. Can J Public Health 99: 137141. [Google Scholar]
  63. Araujo M, Pearson R, Thuiller W, Erhard M, , 2005. Validation of species–climate impact models under climate change. Glob Change Biol 11: 110.[Crossref] [Google Scholar]
  64. Guisan A, Graham CH, Elith J, Huettmann F, , 2007. Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13: 332340.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 30 Nov 2014
  • Accepted : 08 Feb 2015
  • Published online : 06 May 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error