1921
Volume 92, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

We recently reported the analysis of epidemiological data suggesting variability in individual susceptibility to infection by among rural villagers who reside in Sichuan Province of southwestern China. By supplementing the data used in the earlier analysis from other studies we have reported from this region, we presented improved estimates of cercarial exposure, which in turn, result in stronger evidence of susceptibility. This analysis was conducted using an individual-based mathematical model (IBM) whose use was motivated by the nature and extent of field data from the low-transmission environments exemplified by one of our datasets and typical of the current situation in most endemic areas of China. In addition to individual susceptibility and water contact, the model includes stochastic aspects of cercarial exposure as well as of diagnostic procedures, the latter being particularly relevant to the low-transmission environment. The simulation studies show that, to produce key aspects of the epidemiological findings, the distribution of susceptibility ranges over several orders of magnitude and is highly right skewed. We found no compelling evidence that the distribution of susceptibility differed between the two populations that underlie both the epidemiological and simulation results.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.14-0691
2015-06-03
2017-11-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/92/6/1245.html?itemId=/content/journals/10.4269/ajtmh.14-0691&mimeType=html&fmt=ahah

References

  1. Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH, Chandawana SK, Anderson RM, , 1997. Heterogeneties in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94: 338342.[Crossref]
  2. Civitello DJ, Rohr JR, , 2014. Disentangling the effects of exposure and susceptibility on transmission of the zoonotic parasite Schistosoma mansoni . J Anim Ecol 83: 13791386.[Crossref]
  3. Carlton EJ, Hubbard A, Wang S, Spear RC, , 2013. Repeated Schistosoma japonicum infection following treatment in two cohorts: evidence for host susceptibility to helminthiasis? PLoS Negl Trop Dis 7: e2098.[Crossref]
  4. Quinnell R, , 2003. Genetics of susceptibility to human helminth infection. Int J Parasitol 33: 12191231.[Crossref]
  5. Anderson RM, May RM, , 1985. Helminth infections of humans: mathematical models, population dynamics, and control. Adv Parasitol 24: 1101.[Crossref]
  6. Gambhir M, Michael E, , 2008. Complex ecological dynamics and eradicability of the vector borne macroparasitic disease, lymphatic filariasis. PLoS ONE 3: e2874.[Crossref]
  7. Michael E, Simonsen PE, Malecela M, Jaoko WG, Pedersen EM, Mukoko D, Rwegoshora RT, Meyrowitsch DW, , 2001. Transmission intensity and the immunoepidemiology of bancroftian filariasis in East Africa. Parasite Immunol 23: 373388.[Crossref]
  8. Castillo-Chavez C, Feng Z, Xu D, , 2008. A schistosomiasis model with mating structure and time delay. Math Biosci 211: 333341.[Crossref]
  9. Chan MS, Bundy DA, , 1997. Modelling the dynamic effects of community chemotherapy on patterns of morbidity due to Schistosoma mansoni . T Roy Soc Trop Med Hyg (Geneve) 91: 216220.[Crossref]
  10. Feng Z, Li CC, Milner FA, , 2002. Schistosomiasis models with density dependence and age of infection in snail dynamics. Math Biosci 177–178: 271286.[Crossref]
  11. Finkelstein JL, Schleinitz MD, Carabin H, McGarvey ST, , 2008. Decision-model estimation of the age-specific disability weight for schistosomiasis japonica: a systematic review of the literature. PLoS Negl Trop Dis 2: e158.[Crossref]
  12. Ishikawa H, Ohmae H, , 2009. Modeling the dynamics and control of transmission of Schistosoma japonicum and S. mekongi in southeast Asia. Korean J Parasitol 47: 15.[Crossref]
  13. Medley GF, Bundy DA, , 1996. Dynamic modeling of epidemiologic patterns of schistosomiasis morbidity. Am J Trop Med Hyg 55: 149158.
  14. Milner FA, Zhao R, , 2008. A deterministic model of schistosomiasis with spatial structure. Math Biosci Eng 5: 505522.[Crossref]
  15. Anderson RM, May RM, , 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford, New York: Oxford University Press.
  16. Bonabeau E, , 2002. Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA 99 (Suppl 3): 72807287.[Crossref]
  17. Burke DS, Epstein JM, Cummings DA, Parker JI, Cline KC, Singa RM, Chakravarty S, , 2006. Individual-based computational modeling of smallpox epidemic control strategies. Acad Emerg Med 13: 11421149.[Crossref]
  18. Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Weigand T, DeAngelis DL, , 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310: 987991.[Crossref]
  19. Liang S, Seto EY, Remais JV, Zhong B, Yang C, Hubbard A, Davis GM, Gu X, Qiu D, Spear RC, , 2007. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc Natl Acad Sci USA 104: 71107115.[Crossref]
  20. Liang S, Spear RC, Seto E, Hubbard A, Qiu D, , 2005. A multi-group model of Schistosoma japonicum transmission dynamics and control: model calibration and control prediction. Trop Med Int Health 10: 263278.[Crossref]
  21. Liang S, Spear RC, , 2008. Model-based insights into multi-host transmission and control of schistosomiasis. PLoS Med 5: e23.[Crossref]
  22. Maszle DR, , 1998. Dynamic modeling for the control of schistosomiasis in China in light of parametric uncertainty. Graduate Group in Bioengineering. Berkeley, CA: University of California.
  23. Seto EY, Carlton EJ, , 2010. Disease transmission models for public health decision-making: designing intervention strategies for Schistosoma japonicum . Adv Exp Med Biol 673: 172183.[Crossref]
  24. Yakob L, Williams GM, Gray DJ, Halton K, Solon JA, Clements ACA, , 2013. Slaving and release in co-infection control. Parasit Vectors 6: 157.[Crossref]
  25. Carlton EJ, Bates MN, Zhong B, Seto EY, Spear RC, , 2011. Evaluation of mammalian and intermediate host surveillance methods for detecting schistosomiasis reemergence in southwest China. PLoS Negl Trop Dis 5: e987.[Crossref]
  26. Spear RC, , 2012. Internal versus external determinants of Schistosoma japonicum transmission in irrigated agricultural villages. J R Soc Interface 9: 272282.[Crossref]
  27. Seto E, Lee Y, Liang S, Zhong B, , 2007. Individual and village level study of water contact patterns and Schistosoma japonicum infection in mountainous rural China. Trop Med Int Health 12: 11991209.[Crossref]
  28. Spear RC, Seto E, Liang S, Birkner M, Hubbard A, Qiu D, Yang C, Zhong B, Xu F, Gu X, Davis GM, , 2004. Factors influencing the transmission of Schistosoma japonicum in the mountains of Sichuan Province of China. Am J Trop Med Hyg 70: 4856.
  29. Spear RC, Zhong B, Mao Y, Hubbard A, Birkner M, Remais J, Qiu D, , 2004. Spatial and temporal variability in schistosome cercarial density detected by mouse bioassyas in village irrigation ditches in Sichuan, China. Am J Trop Med Hyg 71: 554557.
  30. Wang S, , 2013. Explortion of Surveillance and Control Strategies for Re-emerging Schistosomiasis Environments in Sichuan Province, China: The Development and Application of an Individually-based Model. Graduate Group in Environmental Health Sciences. Berkeley, CA: University of California, 105.
  31. Spear RC, Hubbard A, , 2010. Parameter estimation and site-specific calibration of disease transmission models. Adv Exp Med Biol 673: 99111.[Crossref]
  32. Liang S, Maszle D, Spear RC, , 2002. A quantitative framework for a multi-group model of Schistosoma japonicum transmission dynamics and control in Sichuan, China. Acta Trop 82: 263277.[Crossref]
  33. Scott JT, Diakhaté M, Vereecken K, Fall A, Diop M, Ly A, De Clercq D, De Vlas SJ, Berkvens D, Kestens L, Gryseels B, , 2003. Human water contacts patterns in Schistosoma mansoni epidemic foci in northern Senegal change according to age, sex and place of residence, but are not related to intensity of infection. Trop Med Int Health 8: 100108.[Crossref]
  34. Hubbard A, Liang S, Maszle D, Qiu D, Gu X, Spear RC, , 2002. Estimating the distribution of worm burden and egg excretion of Schistosoma japonicum by risk group in Sichuan Province, China. Parasitology 125: 221231.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0691
Loading
/content/journals/10.4269/ajtmh.14-0691
Loading

Data & Media loading...

Supplementary Data

Supplementary PDF

  • Received : 01 Nov 2014
  • Accepted : 11 Mar 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error