1921
Volume 93, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Outbreaks of diarrheal diseases, including cholera, are related to floods and droughts in regions where water and sanitation infrastructure are inadequate or insufficient. However, availability of data on water scarcity and abundance in transnational basins, are a prerequisite for developing cholera forecasting systems. With more than a decade of terrestrial water storage (TWS) data from the Gravity Recovery and Climate Experiment, conditions favorable for predicting cholera occurrence may now be determined. We explored lead–lag relationships between TWS in the Ganges–Brahmaputra–Meghna basin and endemic cholera in Bangladesh. Since bimodal seasonal peaks in cholera in Bangladesh occur during spring and autumn seasons, two separate logistical models between TWS and disease time series (2002–2010) were developed. TWS representing water availability showed an asymmetrical, strong association with cholera prevalence in the spring ( = −0.53; < 0.001) and autumn ( = 0.45; < 0.001) up to 6 months in advance. One unit (centimeter of water) decrease in water availability in the basin increased odds of above normal cholera by 24% (confidence interval [CI] = 20–31%; < 0.05) in the spring, while an increase in regional water by 1 unit, through floods, increased odds of above average cholera in the autumn by 29% (CI = 22–33%; < 0.05).

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.14-0648
2015-12-09
2019-04-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/93/6/1179.html?itemId=/content/journals/10.4269/ajtmh.14-0648&mimeType=html&fmt=ahah

References

  1. Jutla A, Whitcombe E, Hasan N, Haley B, Akanda A, Huq A, Alam M, Sack RB, Colwell R, , 2013. Environmental factors influencing epidemic cholera. Am J Trop Med Hyg 89: 597607.[Crossref] [Google Scholar]
  2. Jutla AS, Akanda AS, Islam S, , 2010. Tracking cholera in coastal regions using satellite observations. J Am Water Resour Assoc 46: 651662.[Crossref] [Google Scholar]
  3. Akanda AS, Jutla AS, Islam S, , 2009. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett 36: L19401.[Crossref] [Google Scholar]
  4. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR, , 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45: 275283. [Google Scholar]
  5. Akanda AS, Jutla AS, Gute DM, Sack RB, Alam M, Huq A, Colwell RR, Islam S, , 2013. Population vulnerability to biannual cholera outbreaks and associated macro-scale drivers in the Bengal Delta. Am J Trop Med Hyg 89: 950959.[Crossref] [Google Scholar]
  6. Akanda A, Jutla A, Gute D, Evans T, Islam S, , 2012. Reinforcing cholera intervention through prediction-aided prevention. Bull World Health Organ 90: 243244.[Crossref] [Google Scholar]
  7. Akanda AS, Jutla AS, Colwell RR, , 2014. Global diarrhoea action plan needs integrated climate-based surveillance. Lancet Glob Health 2: e69e70.[Crossref] [Google Scholar]
  8. Akanda AS, Jutla AS, Alam M, de Magny GC, Siddique AK, Sack RB, Huq A, Colwell RR, Islam S, , 2011. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta. Water Resour Res 47: W00H07.[Crossref] [Google Scholar]
  9. Jutla AS, Akanda AS, Griffiths JK, Colwell R, Islam S, , 2011. Warming oceans, phytoplankton, and river discharge: implications for cholera outbreaks. Am J Trop Med Hyg 85: 303308.[Crossref] [Google Scholar]
  10. Jutla AS, Akanda AS, Islam S, , 2012. Satellite remote sensing of space-time plankton variability in the Bay of Bengal: connections to cholera outbreaks. Remote Sens Environ 123: 196206.[Crossref] [Google Scholar]
  11. Jutla AS, Akanda AS, Islam S, , 2013. A framework for predicting endemic cholera using satellite derived environmental determinants. Environ Model Softw 47: 148158.[Crossref] [Google Scholar]
  12. Colwell RR, Kaper J, Joseph SW, , 1977. Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198: 394396.[Crossref] [Google Scholar]
  13. Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG, Khan MNH, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR, , 2005. Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71: 46454654.[Crossref] [Google Scholar]
  14. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell R, , 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97: 14381443.[Crossref] [Google Scholar]
  15. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamazaki D, Andreadis K, , 2011. Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115: 35303538.[Crossref] [Google Scholar]
  16. Swenson S, Wahr J, Milly PCD, , 2003. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 39: 1223.[Crossref] [Google Scholar]
  17. Rodell M, Velicogna I, Famiglietti JS, , 2009. Satellite-based estimates of groundwater depletion in India. Nature 460: 9991002.[Crossref] [Google Scholar]
  18. Reager JT, Thomas BF, Famiglietti JS, , 2014. River basin flood potential inferred using GRACE gravity observations at several months lead time. Nat Geosci 7: 588592.[Crossref] [Google Scholar]
  19. Alsdorf D, Han SC, Bates P, Melack J, , 2010. Seasonal water storage on the Amazon floodplain measured from satellites. Remote Sens Environ 114: 24482456.[Crossref] [Google Scholar]
  20. Syed TH, Famiglietti JS, Chambers DP, , 2009. GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J Hydrometeorol 10: 2240.[Crossref] [Google Scholar]
  21. Awange JL, Forootan E, Kuhn M, Kusche J, Heck B, , 2014. Water storage changes and climate variability within the Nile Basin between 2002 and 2011. Adv Water Resour 73: 115.[Crossref] [Google Scholar]
  22. Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL, , 2006. Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33: L19402.[Crossref] [Google Scholar]
  23. Landerer FW, Swenson SC, , 2012. Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48: W04531.[Crossref] [Google Scholar]
  24. Jian J, Webster PJ, Hoyos CD, , 2009. Large-scale controls on Ganges and Brahmaputra river discharge on intraseasonal and seasonal time-scales. QJ Roy Meteorol Soc 135: 353370.[Crossref] [Google Scholar]
  25. Longini IM, Yunus M, Zaman K, Siddique AK, Sack RB, Nizam A, , 2002. Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J Infect Dis 186: 246251.[Crossref] [Google Scholar]
  26. Jutla AS, Small D, Islam S, , 2006. A precipitation dipole in eastern North America. Geophys Res Lett 33: L21703.[Crossref] [Google Scholar]
  27. Hosmer DW, Hosmer T, Le Cessie S, Lemeshow S, , 1997. A comparison of goodness-of-fit tests for the logistic regression model. Stat Med 16: 965980.[Crossref] [Google Scholar]
  28. Somers RH, , 1962. A new asymmetric measure of association for ordinal variables. Am Sociol Rev 27: 799.[Crossref] [Google Scholar]
  29. Hosmer D, Lemeshow S, , 1989. Applied Logistic Regression. New York, NY: Wiley. [Google Scholar]
  30. Clark JS, , 2005. Why environmental scientists are becoming Bayesians. Ecol Lett 8: 214.[Crossref] [Google Scholar]
  31. Ntzoufras I, , 2009. Bayesian Modeling Using WinBUGS. Hoboken, NJ: Wiley.[Crossref] [Google Scholar]
  32. Ahn J, Mukherjee B, Banerjee M, Cooney KA, , 2009. Bayesian inference for the stereotype regression model: application to a case-control study of prostate cancer. Stat Med 28: 31393157.[Crossref] [Google Scholar]
  33. Chu PS, Zhao X, , 2007. A Bayesian regression approach for predicting seasonal tropical cyclone activity over the Central North Pacific. J Clim 20: 40024013.[Crossref] [Google Scholar]
  34. Jutla A, Akanda AS, Huq A, Faruque ASG, Colwell R, Islam S, , 2013. A water marker monitored by satellites to predict seasonal endemic cholera. Remote Sens Lett 4: 822831.[Crossref] [Google Scholar]
  35. Shukla J, Paolino DA, , 1983. The southern oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111: 18301837.[Crossref] [Google Scholar]
  36. Torrence C, Webster PJ, , 1999. Interdecadal changes in the ENSO–monsoon system. J Clim 12: 26792690.[Crossref] [Google Scholar]
  37. Whitaker DW, Wasimi SA, Islam S, , 2001. The El Niño southern oscillation and long-range forecasting of flows in the Ganges. Int J Climatol 21: 7787.[Crossref] [Google Scholar]
  38. Hirpa FA, Hopson TM, De Groeve T, Brakenridge GR, Gebremichael M, Restrepo PJ, , 2013. Upstream satellite remote sensing for river discharge forecasting: application to major rivers in south Asia. Remote Sens Environ 131: 140151.[Crossref] [Google Scholar]
  39. Bartram J, , 2008. Flowing away: water and health opportunities. Bull World Health Organ 86: 2.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0648
Loading
/content/journals/10.4269/ajtmh.14-0648
Loading

Data & Media loading...

  • Received : 17 Oct 2014
  • Accepted : 08 Sep 2015
  • Published online : 09 Dec 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error