Volume 93, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The interruption of vectorial transmission of Chagas disease by in central America is a public health challenge that cannot be resolved by insecticide application alone. In this study, we collected information on previously known household risk factors for infestation in 11 villages and more than 2,000 houses in Guatemala, Honduras, and El Salvador, and we constructed multivariate models and used multimodel inference to evaluate their importance as predictors of infestation in the region. The models had moderate ability to predict infested houses (sensitivity, 0.32–0.54) and excellent ability to predict noninfested houses (specificity higher than 0.90). Predictive ability was improved by including random village effects and presence of signs of infestation (insect feces, eggs, and exuviae) as fixed effects. Multimodel inference results varied depending on factors included, but house wall materials (adobe, bajareque, and palopique) and signs of infestation were among the most important predictive factors. Reduced models were not supported suggesting that all factors contributed to predictions. Previous knowledge and information from this study show that we have evidence to prioritize rural households for improvement to prevent house infestation with in Central America. House improvement will most likely have other health co-benefits.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2009. Neglected Tropical Diseases, Hidden Successes, Emerging Opportunities. Geneva, Switzerland: WHO. [Google Scholar]
  2. Japan International Cooperation Agency, 2012. La No. XIV Reunión Anual de Iniciativa de los Países de Centroamérica (IPCA). Available at: http://www.jica.go.jp/project/spanish/nicaragua/001/news/general/121114.html. Accessed June 15, 2014. [Google Scholar]
  3. Hashimoto K, Cordon-Rosales C, Trampe A, Kawabata M, , 2006. Impact of single and multiple residual sprayings of pyrethroid insecticides against Triatoma dimidiata (Reduviiade; Triatominae), the principal vector of Chagas disease in Jutiapa, Guatemala. Am J Trop Med Hyg 75: 226230. [Google Scholar]
  4. Nakagawa J, Hashimoto K, Cordon-Rosales C, Juarez JA, Trampe R, Marroquin Marroquin L, , 2003. The impact of vector control on Triatoma dimidiata in the Guatemala department of Jutiapa. Ann Trop Med Parasitol 97: 289298.[Crossref] [Google Scholar]
  5. Manne J, Nakagawa J, Yamagata Y, Goehler A, Brownstein JS, Castro MC, , 2012. Triatomine infestation in Guatemala: spatial assessment after two rounds of vector control. Am J Trop Med Hyg 86: 446454.[Crossref] [Google Scholar]
  6. Gurevitz JM, Gaspe MS, Enriquez GF, Vassena CV, Alvarado-Otegui JA, Provecho YM, Mougabure Cueto GA, Picollo MI, Kitron U, Gürtler, 2012. Unexpected failures to control Chagas disease vectors with pyrethroid spraying in northern Argentina. J Med Entomol 49: 13791386.[Crossref] [Google Scholar]
  7. Dias JCP, Schofield CJ, , 1999. The evolution of Chagas disease (American Trypanosomiasis) control after 90 years since Carlos Chagas discovery. Mem Inst Oswaldo Cruz 94 (Suppl I): 103121.[Crossref] [Google Scholar]
  8. Briceño-Leon R, Mendez Galvan J, , 2007. The social determinants of Chagas disease and the transformations of Latin America. Mem Inst Oswaldo Cruz 102 (Suppl I): 109112.[Crossref] [Google Scholar]
  9. Zeledon R, Rojas JC, , 2006. Environmental management for the control of Triatoma dimidiata (Latreille, 1811), (Hemiptera: Reduviidae) in Costa Rica: a pilot project. Mem Inst Oswaldo Cruz 101: 379386.[Crossref] [Google Scholar]
  10. Rojas de Arias A, , 2001. Chagas disease prevention through improved housing using an ecosystem approach to health. Cad Saude Publica 17 (Suppl): 8997.[Crossref] [Google Scholar]
  11. Bustamante DM, De Urioste-Stone SM, Juarez JG, Pennington PM, , 2014. Ecological, social and biological risk factors for continued Trypanosoma cruzi transmission by Triatoma dimidiata in Guatemala. PLoS ONE 9: e104599.[Crossref] [Google Scholar]
  12. Dumonteil E, Nouvellet P, Rosecrans K, Ramirez-Sierra MJ, Gamboa-Leon R, Cruz-Chan V, Rosado-Vallado M, Gourbiere S, , 2013. Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico. PLoS Negl Trop Dis 7: e2466.[Crossref] [Google Scholar]
  13. Weeks ENI, Cordon-Rosales C, Davies C, Gezan S, Yeo M, Cameron MM, , 2013. Risk factors for domestic infestation by the Chagas disease vector Triatoma dimidiata in Chiquimula, Guatemala. Bull Entomol Res 103: 634643.[Crossref] [Google Scholar]
  14. King RJ, Cordon-Rosales C, Cox J, Davies CR, Kitron UD, , 2011. Triatoma dimidiata infestation in Chagas disease endemic regions of Guatemala: comparison of random and targeted cross-sectional surveys. PLoS Negl Trop Dis 5: e1035.[Crossref] [Google Scholar]
  15. Bustamante DM, Monroy C, Pineda S, Rodas A, Castro X, Ayala V, Quiñonez J, Moguel B, Trampe R, Revolorio R, , 2009. Risk factors for intradomiciliary infestation by the Chagas vector Triatoma dimidiata in Jutiapa, Guatemala. Cad Saude Publica 25 (Suppl 1): S83S92.[Crossref] [Google Scholar]
  16. Guzman-Tapia Y, Ramirez-Sierra MJ, Dumonteil E, , 2007. Urban infestation by Triatoma dimidiata in the City of Merida, Yucatan, Mexico. Vector Borne Zoonotic Dis 7: 597606.[Crossref] [Google Scholar]
  17. Bustamante DM, Monroy MC, Juarez JA, Malone JB, , 2007. Environmental determinants of the distribution of Chagas disease vectors in south-eastern Guatemala. Geospat Health 2: 199211.[Crossref] [Google Scholar]
  18. Campbell-Lendrum DH, Angulo VM, Esteban L, Tarazona Z, Parra GJ, Restrepo M, Restrepo BN, Guhl F, Pinto N, Aguilera G, Wilkinson P, Davies CR, , 2007. House-level risk factors for triatomine infestation in Colombia. Int J Epidemiol 36: 866872.[Crossref] [Google Scholar]
  19. Starr MD, Rojas JC, Zeledon R, Hird DW, Carpenter TE, , 1991. Chagas' disease: risk factors for house infestation by Triatoma dimidiata, the major vector of Trypanosoma cruzi in Costa Rica. Am J Epidemiol 133: 740747.[Crossref] [Google Scholar]
  20. Schofield CJ, Marsden PD, , 1982. The effect of wall plaster on a domestic population of Triatoma infestans . Bull Pan Am Health Organ 16: 356360. [Google Scholar]
  21. Monroy C, Rodas A, Mejia M, Tabaru Y, , 1998. Wall plastering and paints as methods to control vectors of Chagas disease in Guatemala. Med Entomol Zool 49: 187193.[Crossref] [Google Scholar]
  22. Rojas de Arias A, Ferro EA, Ferreira ME, Simancas LC, , 1999. Chagas disease vector control through different intervention modalities in endemic localities of Paraguay. Bull World Health Organ 77: 331339. [Google Scholar]
  23. Lebel J, , 2003. Health: an ecosystem approach. Focus Series. Ottawa, Canada: International Development Research Center.
  24. Monroy C, Bustamante DM, Pineda S, Rodas A, Castro X, Ayala V, Quiñonez J, Moguel B, Trampe R, Revolorio R, , 2009. House improvements as community participation in the control of Triatoma dimidiata re-infestation in Jutiapa, Guatemala. Cad Saude Publica 25 (Suppl 1): S168S178.[Crossref] [Google Scholar]
  25. Monroy C, Castro X, Bustamante DM, Pineda SS, Rodas A, Moguel B, Ayala V, Quiñonez J, Charron D, , 2012. An ecosystem approach for the prevention of Chagas disease in rural Guatemala. , ed. Ecohealth Research in Practice: Innovative Applications of an Ecosystem Approach to Health. Ottawa, Ontario, Canada: Springer, 153162.[Crossref] [Google Scholar]
  26. Pellecer MJ, Dorn PL, Bustamante DM, Rodas A, Monroy MC, , 2013. Vector blood meals are an early indicator of the effectiveness of the Ecohealth approach in halting Chagas transmission in Guatemala. Am J Trop Med Hyg 88: 638644.[Crossref] [Google Scholar]
  27. Lucero DE, Morrissey LA, Rizzo DM, Rodas A, Garnica R, Stevens L, Bustamante DM, Monroy MC, , 2013. Ecohealth interventions limit triatomine reinfestation following insecticide spraying in La Brea, Guatemala. Am J Trop Med Hyg 88: 630637.[Crossref] [Google Scholar]
  28. Aiga H, Sasagawa E, Hashimoto K, Nakamura J, Zuniga C, Romero Cheves JE, Ramos Hernandez HM, Nakagawa J, Tabaru Y, , 2012. Chagas disese: assessing the existence of a threshold of bug infestation rate. Am J Trop Med Hyg 86: 972979.[Crossref] [Google Scholar]
  29. Burnham KP, Anderson DR, , 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edition. New York, NY: Springer. [Google Scholar]
  30. Braveman PA, Egerter SA, Woolf SH, Marks JS, , 2011. When do we know enough to recommend action on the social determinants of health? Am J Prev Med 40 (Suppl 1): S58S66.[Crossref] [Google Scholar]
  31. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS, , 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24: 127135.[Crossref] [Google Scholar]
  32. R Core Team, 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/. [Google Scholar]
  33. Bates D, Maechler M, Bolker B, Walker S, , 2014. lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1-7. Available at: http://CRAN.R-project.org/package=lme4. [Google Scholar]
  34. Fox J, Weisberg S, , 2011. An R Companion to Applied Regression, 2nd edition. Thousand Oaks, CA: Sage. Available at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion. [Google Scholar]
  35. King RJ, Campbell-Lendrum DH, Davies CR, , 2004. Predicting geographic variation in cutaneous leishmaniasis, Colombia. Emerg Infect Dis 10: 598607.[Crossref] [Google Scholar]
  36. Kuhn M, Wing J, Weston S, Williams A, Keefer Ch, Engelhardt A, Cooper T, Mayer Z, R Core Team, , 2014. Caret: Classification and Regression Training. R package version 6.0-22. Available at: http://CRAN.R-project.org/package=caret. [Google Scholar]
  37. Calcagno V, Mazancourt C, , 2010. Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34: 129.[Crossref] [Google Scholar]
  38. Calcagno V, , 2013. Glmulti: Model Selection and Multimodel Inference Made Easy. R package version 1.0.7. Available at: http://CRAN.R-project.org/package=glmulti. [Google Scholar]
  39. Burnham KP, Anderson DR, Huyvaert KP, , 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65: 2335.[Crossref] [Google Scholar]
  40. Galipaud M, Gillingham MAF, David M, Dechaume-Moncharmont FX, , 2014. Ecologists overestimate the importance of predictor variables in model averaging: a plea for cautious interpretations. Methods Ecol Evol 5: 983991.[Crossref] [Google Scholar]
  41. Monroy C, Mejia M, Rodas A, Rosales R, Horio H, Tabaru Y, , 1998. Comparison of indoor searches with whole house demolition collections of the vectors of Chagas disease and their indoor distribution. Med Entomol Zool 49: 195200.[Crossref] [Google Scholar]
  42. Valença-Barbosa C, Lima MM, Sarquis O, Bezerra CM, Abad-Franch F, , 2014. Modeling disease vector occurrence when detection is imperfect II: drivers of site-occupancy by synanthropic Triatoma brasiliensis in the Brazilian northeast. PLoS Negl Trop Dis 8: e2861.[Crossref] [Google Scholar]
  43. Monroy MC, Mejia ML, Rodas AG, , 1993. Emplastos y repellos en pared como control de vectores en la enfermedad de Chagas. Ciudad de Guatemala, Guatemala: Direccion General de Investigacion, Universidad de San Carlos de Guatemala. [Google Scholar]
  44. Cecere MC, Canale DM, Gurtler RE, , 2003. Effects of refuge availability on the population dynamics of Triatoma infestans in central Argentina. J Appl Ecol 40: 742756.[Crossref] [Google Scholar]
  45. Gurevitz JM, Ceballos LA, Gaspe MS, Alvarado-Otegui JA, Enríquez GF, Kitron U, Gürtler RE, , 2011. Factors affecting infestation by Triatoma infestans in a rural area of the humid Chaco in Argentina: a multi-model inference approach. PLoS Negl Trop Dis 5: 1349.[Crossref] [Google Scholar]
  46. Dias JCP, Prata A, Correira D, , 2008. Problems and perspectives for Chagas disease control: in search of a realistic analysis. Rev Soc Bras Med Trop 41: 193196.[Crossref] [Google Scholar]
  47. Avila Montes GA, Ponce C, Ponce E, Martinez Hernandez M, Flores M, , 1999. Insecticidal paint and fumigant canisters for Chagas' disease control: community acceptance in Honduras. Pan Am J Public Health 6: 311320.[Crossref] [Google Scholar]
  48. Kroeger A, Ordoñez-Gonzalez J, Behrend M, Alvarez G, , 1999. Bednet impregnation for Chagas disease control: a new perspective. Trop Med Int Health 4: 194198.[Crossref] [Google Scholar]
  49. De Urioste-Stone SM, Pennington PM, Pellecer E, Aguilar TM, Samayoa G, Perdomo HD, Enriquez H, Juarez JG, , 2015. Development of a community-based intervention for the control of Chagas disease based on peridomestic animal management: an eco-bio-social perspective. Trans R Soc Trop Med Hyg 109: 159167.[Crossref] [Google Scholar]
  50. Ehrenberg JP, Ault SK, , 2005. Neglected diseases of neglected populations: thinking to reshape the determinants of health in Latin America and the Caribbean. BMC Public Health 5: 119.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 19 Sep 2014
  • Accepted : 05 Mar 2015
  • Published online : 08 Jul 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error