Volume 92, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in mosquitoes are unknown. We found that 3.2% of females in a population of from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all genotypes can lay autogenously. We conclude that requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Adams TS, , 1999. Hematophagy and hormone release. Ann Entomol Soc Am 92: 113.[Crossref] [Google Scholar]
  2. Lehane MJ, , 2005. The Biology of Blood-Sucking Insects. Cambridge: Cambridge University Press.[Crossref] [Google Scholar]
  3. Garrett-Jones C, , 1951. The Congo Floor Maggot, Auchmeromyia luteola (F.), in a laboratory culture. Bull Entomol Res 41: 679708.[Crossref] [Google Scholar]
  4. Leak SGA, , 1999. Tsetse biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis. Wallingford: CABI. [Google Scholar]
  5. Zeledón R, Rabinovich JE, , 1981. Chagas' disease: an ecological appraisal with special emphasis on its insect vectors. Annu Rev Entomol 26: 101133.[Crossref] [Google Scholar]
  6. Briegel H, , 2003. Physiological bases of mosquito ecology. J Vector Ecol 28: 111. [Google Scholar]
  7. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  8. Clements AN, , 1992. The Biology of Mosquitoes: Development, Nutrition, and Reproduction. London: Chapman & Hall. [Google Scholar]
  9. Junkum A, Choochote W, Jitpakdi A, Leemingsawat S, Komalamisra N, Jariyapan N, Boonyatakorn C, , 2003. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies. Mem Inst Oswaldo Cruz 98: 481485.[Crossref] [Google Scholar]
  10. Pawlowski J, Szadziewski R, Kmieciak D, Fahrni J, Bittar G, , 1996. Phylogeny of the infraorder Culicomorpha (Diptera: Nematocera) based on 28S RNA gene sequences. Syst Entomol 21: 167178.[Crossref] [Google Scholar]
  11. Spielman A, , 1957. The inheritance of autogeny in the Culex pipiens complex of mosquitoes. Am J Hyg 65: 404425. [Google Scholar]
  12. Tveten MS, Meola RW, , 1988. Autogeny in Culex salinarius from Texas, Florida and New Jersey. J Am Mosq Control Assoc 4: 436441. [Google Scholar]
  13. Provost-Javier KN, Chen S, Rasgon JL, , 2010. Vitellogenin gene expression in autogenous Culex tarsalis . Insect Mol Biol 19: 423429.[Crossref] [Google Scholar]
  14. Sweeney A, Russell R, , 1973. Autogeny in Anopheles amictus hilli . Mosq News 33: 467468. [Google Scholar]
  15. O'Meara GF, Larson VL, Mook DH, , 1993. Blood feeding and autogeny in the peridomestic mosquito Aedes bahamensis (Diptera: Culicidae). J Med Entomol 30: 378383.[Crossref] [Google Scholar]
  16. Mori A, Romero-Severson J, Black WC, Severson DW, , 2008. Quantitative trait loci determining autogeny and body size in the Asian tiger mosquito (Aedes albopictus). Heredity 101: 7582.[Crossref] [Google Scholar]
  17. Thomas V, Leng YP, , 1972. The inheritance of autogeny in Aedes (Finlaya) togoi (Theobald) from Malaysia and some aspects of its biology. Southeast Asian J Trop Med Public Health 3: 163174. [Google Scholar]
  18. Trpis M, , 1977. Autogeny in diverse populations of Aedes aegypti from East Africa. Tropenmed Parasitol 28: 7782. [Google Scholar]
  19. Telang A, Li Y, Noriega FG, Brown MR, , 2006. Effects of larval nutrition on the endocrinology of mosquito egg development. J Exp Biol 209: 645655.[Crossref] [Google Scholar]
  20. Corbet P, , 1967. Facultative autogeny in arctic mosquitoes. Nature 215: 662663.[Crossref] [Google Scholar]
  21. Su T, Mulla MS, , 1997. Physiological aspects of autogeny in Culex tarsalis (Diptera: Culicidae): influences of sugar-feeding, mating, body weight, and wing length. J Vector Ecol J Soc Vector Ecol 22: 115121. [Google Scholar]
  22. Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM, , 2012. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21: 51385150.[Crossref] [Google Scholar]
  23. Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR, , 2011. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278: 24462454.[Crossref] [Google Scholar]
  24. Van Handel E, Day JF, , 1989. Correlation between wing length and protein content of mosquitoes. J Am Mosq Control Assoc 5: 180182. [Google Scholar]
  25. Schneider CA, Rasband WS, Eliceiri KW, , 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671675.[Crossref] [Google Scholar]
  26. Wickham H, , 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer. [Google Scholar]
  27. Zeileis A, Kleiber C, Jackman S, , 2008. Regression models for count data in R. J Stat Softw 27: 121. [Google Scholar]
  28. Chambers GM, Klowden MJ, , 1994. Nutritional reserves of autogenous and anautogenous selected strains of Aedes albopictus (Diptera: Culicidae). J Med Entomol 31: 554560.[Crossref] [Google Scholar]
  29. Kay BH, Edman JD, Mottram P, , 1986. Autogeny in Culex annulirostris from Australia. J Am Mosq Control Assoc 2: 1113. [Google Scholar]
  30. Vinogradova EB, Karpova SG, , 2006. Cultivation of the mosquito Culex pipiens pipiens f. molestus (Diptera, Culicidae) without blood feeding. Parazitologiia 40: 306311. [Google Scholar]
  31. Telang A, Wells MA, , 2004. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol 50: 677685.[Crossref] [Google Scholar]
  32. O'Meara GF, Evans DG, , 1973. Blood-feeding requirements of the mosquito: geographical variation in Aedes taeniorhynchus . Science 180: 12911293.[Crossref] [Google Scholar]
  33. O'Meara GF, Edman JD, , 1975. Autogenous egg production in the salt-marsh mosquito, Aedes taeniorhynchus . Biol Bull 149: 384396.[Crossref] [Google Scholar]
  34. O'Meara G, Craig G, Jr, 1969. Monofactorial inheritance of autogeny in Aedes atropalpus . Mosq News 29: 1422. [Google Scholar]
  35. Brust RA, , 1991. Environmental regulation of autogeny in Culex tarsalis (Diptera: Culicidae) from Manitoba, Canada. J Med Entomol 28: 847853.[Crossref] [Google Scholar]
  36. Strickman D, Fonseca DM, , 2012. Autogeny in Culex pipiens complex mosquitoes from the San Francisco Bay Area. Am J Trop Med Hyg 87: 719726.[Crossref] [Google Scholar]
  37. Reisen W, Milby M, Bock M, , 1984. The effects of immature stress on selected events in the life history of Culex tarsalis . Mosq News 44: 385395. [Google Scholar]
  38. Hansen IA, Attardo GM, Park J-H, Peng Q, Raikhel AS, , 2004. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proc Natl Acad Sci USA 101: 1062610631.[Crossref] [Google Scholar]
  39. Attardo GM, Hansen IA, Raikhel AS, , 2005. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35: 661675.[Crossref] [Google Scholar]
  40. Chambers GM, Klowden MJ, , 1996. Distention and sugar feeding induce autogenous egg development by the Asian tiger mosquito (Diptera:Culicidae). J Med Entomol 33: 372378.[Crossref] [Google Scholar]
  41. Clifton ME, Noriega FG, , 2011. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J Insect Physiol 57: 12741281.[Crossref] [Google Scholar]
  42. Clifton ME, Noriega FG, , 2012. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti . J Insect Physiol 58: 10071019.[Crossref] [Google Scholar]
  43. Sota T, Mogi M, , 1994. Seasonal life-cycle and autogeny in the mosquito Aedes togoi in northern Kyushu, Japan, with experimental analysis of the effects of temperature, photoperiod and food on life-history traits. Res Popul Ecol (Kyoto) 36: 105114.[Crossref] [Google Scholar]
  44. Sota T, Mogi M, , 1995. Geographic variation in the expression of autogeny in Aedes togoi (Diptera: Culicidae) under different temperature and photoperiod conditions. J Med Entomol 32: 181189.[Crossref] [Google Scholar]
  45. O'Meara GF, Evans DC, , 1977. Autogeny in saltmarsh mosquitoes induced by a substance from the male accessory gland. Nature 267: 342344.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 28 Jul 2014
  • Accepted : 20 Nov 2014
  • Published online : 01 Apr 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error