Volume 91, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue is the most important mosquito-borne viral disease to humans. Bats are potential reservoirs for flaviviruses, including dengue virus (DENV). In this work, bats were inoculated with two serotypes of DENV using different routes. For experimental inoculations (EI) 1 and 2, bats were inoculated subcutaneously or intraperitoneally with DENV-4; for EI-3 bats were inoculated intraperitoneally with DENV-1. Mock inoculated bats were kept as controls. In EI-4, bats were bitten by mosquitoes infected with DENV-1 or 4. Reverse transcription-polymerase chain reaction assays in plasma and spleen tissue collected from Day 1 to Days 9–17 after inoculation failed to reveal the presence of viral RNA in any of the samples. No evidence of circulating NS1 or specific anti-DENV IgG was detected in the plasma of the inoculated bats. These results indicate that bats are incapable of sustaining dengue virus replication and are unlikely to act as reservoirs for this virus.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Clyde K, Kyle JL, Harris E, , 2006. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80: 1141811431.[Crossref] [Google Scholar]
  2. Martina BE, Koraka P, Osterhaus AD, , 2009. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22: 564581.[Crossref] [Google Scholar]
  3. Simmons CP, Farrar JJ, van Vinh Cahu N, Wills B, , 2012. Dengue. N Engl J Med 366: 14231432.[Crossref] [Google Scholar]
  4. Muller DA, Young PR, , 2013. The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antiviral Res 98: 192208.[Crossref] [Google Scholar]
  5. Peeling RW, Artsob H, Pelegrino JL, Buchy P, Cardosa MJ, Devi S, Enria DA, Farrar J, Gubler DJ, Guzman MG, Halstead SB, Hunsperger E, Kliks S, Margolis HS, Nathanson CM, Nguyen VC, Rizzo N, Vázquez S, Yoksan S, , 2010. Evaluation of diagnostic tests: dengue. Nat Rev Microbiol 8: S30S38.[Crossref] [Google Scholar]
  6. Guzmán MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martı'nez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW, , 2010. Dengue: a continuing global threat. Nat Rev Microbiol 12 (Suppl): S7S16.[Crossref] [Google Scholar]
  7. Whitehorn J, Simmons CP, , 2011. The pathogenesis of dengue. Vaccine 29: 72217228.[Crossref] [Google Scholar]
  8. Zompi S, Harris E, , 2012. Animal models of dengue virus infection. Viruses 4: 6282.[Crossref] [Google Scholar]
  9. Weaver SC, Vasilakis N, , 2009. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol 9: 523540.[Crossref] [Google Scholar]
  10. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC, , 2011. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9: 532541.[Crossref] [Google Scholar]
  11. de Thoisy B, Lacoste V, Germain A, Munoz-Jordan J, Colon C, Mauffrey JF, Delaval M, Catzeflis F, Kazanji M, Matheus S, Dussart P, Morvan J, Aguilar-Setien A, Deparis X, Lavergne A, , 2009. Dengue infection in neotropical forest mammals. Vector Borne Zoonotic Dis 9: 157170.[Crossref] [Google Scholar]
  12. Platt KB, Mangiafico JA, Rocha OJ, Zaldivar ME, Mora J, Trueba G, Rowley WA, , 2000. Detection of dengue virus neutralizing antibodies in bats from Costa Rica and Ecuador. J Med Entomol 37: 965967.[Crossref] [Google Scholar]
  13. Aguilar-Setien A, Romero-Almaraz ML, Sanchez-Hernandez C, Figueroa R, Juarez-Palma LP, Garcia-Flores MM, Vazquez-Salinas C, Salas-Rojas M, Hidalgo-Martinez AC, Pierle SA, Garcia-Estrada C, Ramos C, , 2008. Dengue virus in Mexican bats. Epidemiol Infect 136: 16781683.[Crossref] [Google Scholar]
  14. Machain-Williams C, Lopez-Uribe M, Talavera-Aguilar L, Carrillo-Navarrete J, Vera-Escalante L, Puerto-Manzano F, Ulloa A, Farfan-Ale JA, Garcia-Rejon J, Blitvich BJ, Lorono-Pino MA, , 2013. Serologic evidence of flavivirus infection in bats in the Yucatan Peninsula of Mexico. J Wildl Dis 49: 684689.[Crossref] [Google Scholar]
  15. Sotomayor-Bonilla J, Chaves A, Rico-Chavez O, Rostal MK, Ojeda-Flores R, Salas-Rojas M, Aguilar-Setien A, Ibanez-Bernal S, Barbachano-Guerrero A, Gutierrez-Espeleta G, Aguilar-Faisal JL, Aguirre AA, Daszak P, Suzan G, , 2014. Dengue virus in bats from southeastern Mexico. Am J Trop Med Hyg 91: 129131.[Crossref] [Google Scholar]
  16. Shi Z, , 2010. Bat and virus. Protein Cell 1: 109114.[Crossref] [Google Scholar]
  17. Altringham JD, , 2011. Bats: From Evolution to Conservation. Oxford, UK: Oxford University Press.[Crossref] [Google Scholar]
  18. Medellín RA, Equihua M, Amin MA, , 2000. Bat diversity and abundance as indicators of disturbance in neotropical rainforests. Conserv Biol 14: 16661675.[Crossref] [Google Scholar]
  19. Dobson AP, , 2005. Virology. What links bats to emerging infectious diseases? Science 310: 628629.[Crossref] [Google Scholar]
  20. Wong S, Lau S, Woo P, Yuen KY, , 2007. Bats as a continuing source of emerging infections in humans. Rev Med Virol 17: 6791.[Crossref] [Google Scholar]
  21. Medellin RA, Arita HT, Sánchez HO, , 2008. Identificación de los Murciélagos de México: Claves de campo. Second edition. México: Instituto de Ecología, UNAM. [Google Scholar]
  22. Mosso C, Galvan-Mendoza IJ, Ludert JE, del Angel RM, , 2008. Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology 378: 193199.[Crossref] [Google Scholar]
  23. Ludert JE, Mosso C, Ceballos-Olvera I, del Angel RM, , 2008. Use of a commercial enzyme immunoassay to monitor dengue virus replication in cultured cells. Virol J 5: 51.[Crossref] [Google Scholar]
  24. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ, , 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7: 9.[Crossref] [Google Scholar]
  25. Cox J, Mota J, Sukupolvi-Petty S, Diamond MS, Rico-Hesse R, , 2012. Mosquito bite delivery of dengue virus enhances immunogenicity and pathogenesis in humanized mice. J Virol 86: 76377649.[Crossref] [Google Scholar]
  26. Voge NV, Sanchez-Vargas I, Blair CD, Eisen L, Beaty BJ, , 2013. Detection of dengue virus NS1 antigen in infected Aedes aegypti using a commercially available kit. Am J Trop Med Hyg 88: 260266.[Crossref] [Google Scholar]
  27. Moreno-Garcia M, Lanz-Mendoza H, Cordoba-Aguilar A, , 2010. Genetic variance and genotype-by-environment interaction of immune response in Aedes aegypti (Diptera: Culicidae). J Med Entomol 47: 111120.[Crossref] [Google Scholar]
  28. Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuk B, Klungthong C, Richardson JH, Ponlawat A, Jarman RG, Jarman RG, Scott TW, , 2012. Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 86: 18531861.[Crossref] [Google Scholar]
  29. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV, , 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30: 545551. [Google Scholar]
  30. Epstein JH, Quan PL, Briese T, Street C, Jabado O, Conlan S, Ali Khan S, Verdugo D, Hossain MJ, Hutchison SK, Egholm M, Luby SP, Daszak P, Lipkin WI, , 2010. Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. PLoS Pathog 6: e1000972.[Crossref] [Google Scholar]
  31. Donaldson EF, Haskew AN, Gates JE, Huynh J, Moore CJ, Frieman MB, , 2010. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J Virol 84: 1300413018.[Crossref] [Google Scholar]
  32. Wu Z, Ren X, Yang L, Hu Y, Yang J, He G, Zhang J, Dong J, Sun L, Du J, Liu L, Xue Y, Wang J, Yang F, Zhang S, Jin Q, , 2012. Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol 86: 1099911012.[Crossref] [Google Scholar]
  33. He B, Yang F, Yang W, Zhang Y, Feng Y, Zhou J, Xie J, Bao X, Guo H, Li Y, Xia L, Li N, Matthijnssens J, Zhang H, Tu C, , 2013. Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses. J Virol 87: 1235712366.[Crossref] [Google Scholar]
  34. Dacheux L, Cervantes-Gonzalez M, Guigon G, Thiberge JM, Vandenbogaert M, Maufrais C, Caro V, Bourhy H, , 2014. A preliminary study of viral metagenomics of French bat species in contact with humans: identification of new mammalian viruses. PLoS ONE 9: e87194.[Crossref] [Google Scholar]
  35. Rothman AL, , 2011. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11: 532543.[Crossref] [Google Scholar]
  36. Kyle JL, Beatty PR, Harris E, , 2007. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195: 18081817.[Crossref] [Google Scholar]
  37. Davis A, Bunning M, Gordy P, Panella N, Blitvich B, Bowen R, , 2005. Experimental and natural infection of North American bats with West Nile virus. Am J Trop Med Hyg 73: 467469. [Google Scholar]
  38. van den Hurk AF, Smith CS, Field HE, Smith IL, Northill JA, Taylor CT, Jansen CC, Smith GA, Mackenzie JS, , 2009. Transmission of Japanese encephalitis virus from the black flying fox, Pteropus alecto, to Culex annulirostris mosquitoes, despite the absence of detectable viremia. Am J Trop Med Hyg 81: 457462. [Google Scholar]
  39. Paes MV, Pinhao AT, Barreto DF, Costa SM, Oliveira MP, Nogueira AC, Takiya CM, Farias-Filho JC, Schatzmayr HG, Alves AM, Barth OM, , 2005. Liver injury and viremia in mice infected with dengue-2 virus. Virology 338: 236246.[Crossref] [Google Scholar]
  40. Watanabe S, Omatsu T, Miranda ME, Masangkay JS, Ueda N, Endo M, Kato K, Tohya Y, Yoshikawa Y, Akashi H, , 2010. Epizootiology and experimental infection of Yokose virus in bats. Comp Immunol Microbiol Infect Dis 33: 2536.[Crossref] [Google Scholar]
  41. Perea-Martinez L, Moreno-Sandoval HN, Moreno-Altamirano MM, Salas-Rojas M, Garcia-Flores MM, Arechiga-Ceballos N, Tordo N, Marianneau P, Aguilar-Setien A, , 2013. Experimental infection of Artibeus intermedius bats with serotype-2 dengue virus. Comp Immunol Microbiol Infect Dis 36: 193198.[Crossref] [Google Scholar]
  42. Jessie K, Fong MY, Devi S, Lam SK, Wong KT, , 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189: 14111418.[Crossref] [Google Scholar]
  43. Barr KL, Anderson BD, Heil GL, Friary JA, Gray GC, Focks DA, , 2012. Dengue serotypes 1–4 exhibit unique host specificity in vitro . Virus Adaptation and Treatment 4: 8591. [Google Scholar]
  44. Young PR, Hilditch PA, Bletchly C, Halloran W, , 2000. An antigen capture enzyme-linked immunosorbent assay reveals high levels of the dengue virus protein NS1 in the sera of infected patients. J Clin Microbiol 38: 10531057. [Google Scholar]
  45. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M, , 2002. Enzyme-linked immunosorbent assay specific to Dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the acute phase of disease in patients experiencing primary or secondary infections. J Clin Microbiol 40: 376381.[Crossref] [Google Scholar]
  46. Ramirez AH, Moros Z, Comach G, Zambrano J, Bravo L, Pinto B, Vielma S, Cardier J, Liprandi F, , 2009. Evaluation of dengue NS1 antigen detection tests with acute sera from patients infected with dengue virus in Venezuela. Diagn Microbiol Infect Dis 65: 247253.[Crossref] [Google Scholar]
  47. Conway MJ, Watson AM, Colpitts TM, Dragovic SM, Li Z, Wang P, Feitosa F, Shepherd DT, Ryman KD, Klimstra WB, , 2014. Mosquito saliva serine protease enhances dissemination of dengue virus into the mammalian host. J Virol 88: 164175.[Crossref] [Google Scholar]
  48. Surasombatpattana P, Ekchariyawat P, Hamel R, Patramool S, Thongrungkiat S, Denizot M, Delaunay P, Thomas F, Luplertlop N, Yssel H, , 2013. Aedes aegypti saliva contains a prominent 34-kDa protein that strongly enhances dengue virus replication in human keratinocytes. J Invest Dermatol 134: 281284.[Crossref] [Google Scholar]
  49. Ader DB, Celluzzi C, Bisbing J, Gilmore L, Gunther V, Peachman KK, Rao M, Barvir D, Sun W, Palmer DR, , 2004. Modulation of dengue virus infection of dendritic cells by Aedes aegypti saliva. Viral Immunol 17: 252265.[Crossref] [Google Scholar]
  50. Sulkin SE, Allen R, Sims R, , 1963. Studies of arthropod-borne virus infections in Chiroptera. I. Susceptibility of insectivorous species to experimental infection with Japanese B and St. Louis encephalitis viruses. Am J Trop Med Hyg 12: 800814. [Google Scholar]
  51. Vaughan K, Greenbaum J, Blythe M, Peters B, Sette A, , 2010. Meta-analysis of all immune epitope data in the Flavivirus genus: inventory of current immune epitope data status in the context of virus immunity and immunopathology. Viral Immunol 23: 259284.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 10 Jun 2014
  • Accepted : 06 Aug 2014
  • Published online : 03 Dec 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error