1921
Volume 92, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.14-0330
2015-02-04
2018-12-13
Loading full text...

Full text loading...

/deliver/fulltext/14761645/92/2/422.html?itemId=/content/journals/10.4269/ajtmh.14-0330&mimeType=html&fmt=ahah

References

  1. Weaver SC, Reisen WK, , 2010. Present and future arboviral threats. Antiviral Res 85: 328345.[Crossref] [Google Scholar]
  2. Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G, , 2011. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae . Science 332: 855858.[Crossref] [Google Scholar]
  3. Glaser RL, Meola MA, , 2010. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5: e11977.[Crossref] [Google Scholar]
  4. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN, , 2008. Wolbachia and virus protection in insects. Science 322: 702.[Crossref] [Google Scholar]
  5. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, Dimopoulos G, , 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: e1561.[Crossref] [Google Scholar]
  6. Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon N, Alma A, Favia G, Daffonchio D, Bandi C, , 2010. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76: 74447450.[Crossref] [Google Scholar]
  7. Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I, , 2012. Midgut bacterial dynamics in Aedes aegypti . FEMS Microbiol Ecol 80: 556565.[Crossref] [Google Scholar]
  8. Bishop-Lilly KA, Turell MJ, Willner KM, Butani A, Nolan NM, Lentz SM, Akmal A, Mateczun A, Brahmbhatt TN, Sozhamannan S, Whitehouse CA, Read TD, , 2010. Arbovirus detection in insect vectors by rapid, high-throughput pyrosequencing. PLoS Negl Trop Dis 4: e878.[Crossref] [Google Scholar]
  9. Attoui H, Mohd Jaafar F, Belhouchet M, Biagini P, Cantaloube J-F, de Micco P, de Lamballerie X, , 2005. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 343: 212223.[Crossref] [Google Scholar]
  10. Cook S, Moureau G, Kitchen A, Gould EA, de Lamballerie X, Holmes EC, Harbach RE, , 2012. Molecular evolution of the insect-specific flaviviruses. J Gen Virol 93: 223234.[Crossref] [Google Scholar]
  11. Nasar F, Palacios G, Gorchakov RV, Guzman H, Da Rosa AP, Savji N, Popov VL, Sherman MB, Lipkin WI, Tesh RB, Weaver SC, , 2012. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. Proc Natl Acad Sci USA 109: 1462214627.[Crossref] [Google Scholar]
  12. Quan P-L, Junglen S, Tashmukhamedova A, Conlan S, Hutchison SK, Kurth A, Ellerbrok H, Egholm M, Briese T, Leendertz FH, Lipkin WI, , 2010. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire. Virus Res 147: 1724.[Crossref] [Google Scholar]
  13. Tyler S, Bolling BG, Blair CD, Brault AC, Pabbaraju K, Armijos MV, Clark DC, Calisher CH, Drebot MA, , 2011. Distribution and phylogenetic comparisons of a novel mosquito flavivirus sequence present in Culex tarsalis mosquitoes from western Canada with viruses isolated in California and Colorado. Am J Trop Med Hyg 85: 162168.[Crossref] [Google Scholar]
  14. Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, Guzman H, Wood TG, Popov V, Gorchakov R, González AV, Haddow AD, Watts DM, da Rosa AP, Weaver SC, Lipkin WI, Tesh RB, , 2013. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol 87: 24752488.[Crossref] [Google Scholar]
  15. Marklewitz M, Zirkel F, Rwego IB, Heidemann H, Trippner P, Kurth A, Kallies R, Briese T, Lipkin WI, Drosten C, Gillespie TR, Junglen S, , 2013. Discovery of a unique novel clade of mosquito-associated bunyaviruses. J Virol 87: 1285012865.[Crossref] [Google Scholar]
  16. Sang RC, Gichogo A, Gachoya J, Dunster MD, Ofula V, Hunt AR, Crabtree MB, Miller BR, Dunster LM, , 2003. Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148: 10851093.[Crossref] [Google Scholar]
  17. Bolling BG, Eisen L, Moore CG, Blair CD, , 2011. Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am J Trop Med Hyg 85: 169177.[Crossref] [Google Scholar]
  18. Saiyasombat R, Bolling BG, Brault AC, Bartholomay LC, Blitvich BJ, , 2011. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol 48: 10311038.[Crossref] [Google Scholar]
  19. Haddow AD, Guzman H, Popov VL, Wood TG, Widen SG, Haddow AD, Tesh RB, Weaver SC, , 2013. First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology 440: 134139.[Crossref] [Google Scholar]
  20. Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD, , 2012. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427: 9097.[Crossref] [Google Scholar]
  21. Hobson-Peters J, Yam AW, Lu JW, Setoh YX, May FJ, Kurucz N, Walsh S, Prow NA, Davis SS, Weir R, Melville L, Hunt N, Webb RI, Blitvich BJ, Whelan P, Hall RA, , 2013. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS ONE 8: e56534.[Crossref] [Google Scholar]
  22. Kent RJ, Crabtree MB, Miller BR, , 2010. Transmission of West Nile virus by Culex quinquefasciatus Say infected with Culex Flavivirus Izabal. PLoS Negl Trop Dis 4: e671.[Crossref] [Google Scholar]
  23. Higgs S, Marquardt WC, , 2005. Care, maintenance, and experimental infection of mosquitoes. , ed. Biology of Disease Vectors. Second edition. Burlington, MA: Elsevier, 733739. [Google Scholar]
  24. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I, , 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 11171123.[Crossref] [Google Scholar]
  25. Langmead B, Salzberg SL, , 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357359.[Crossref] [Google Scholar]
  26. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, , 2011. Integrative genomics viewer. Nat Biotechnol 29: 2426.[Crossref] [Google Scholar]
  27. Posada D, Crandall KA, , 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817818.[Crossref] [Google Scholar]
  28. Huelsenbeck JP, Ronquist F, , 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.[Crossref] [Google Scholar]
  29. Ronquist F, Huelsenbeck JP, , 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.[Crossref] [Google Scholar]
  30. Hoshino K, Isawa H, Tsuda Y, Sawabe K, Kobayashi M, , 2009. Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 391: 119129.[Crossref] [Google Scholar]
  31. Stollar V, Thomas L, , 1975. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64: 367377.[Crossref] [Google Scholar]
  32. Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X, , 2006. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87: 735748.[Crossref] [Google Scholar]
  33. Yamanaka A, Thongrungkiat S, Ramasoota P, Konishi E, , 2013. Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. Infect Genet Evol 19: 188194.[Crossref] [Google Scholar]
  34. Roiz D, Vázquez A, Rosso F, Arnoldi D, Girardi M, Cuevas L, Perez-Pastrana E, Sánchez-Seco MP, Tenorio A, Rizzoli A, , 2012. Detection of a new insect flavivirus and isolation of Aedes flavivirus in northern Italy. Parasit Vectors 5: 223.[Crossref] [Google Scholar]
  35. Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K, , 2007. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405414.[Crossref] [Google Scholar]
  36. Cirimotich CM, Ramirez JL, Dimopoulos G, , 2011. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10: 307310.[Crossref] [Google Scholar]
  37. Weiss B, Aksoy S, , 2011. Microbiome influences on insect host vector competence. Trends Parasitol 27: 514522.[Crossref] [Google Scholar]
  38. Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA, , 2013. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti . PLoS Negl Trop Dis 7: e2362.[Crossref] [Google Scholar]
  39. Kambris Z, Cook PE, Phuc HK, Sinkins SP, , 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134136.[Crossref] [Google Scholar]
  40. Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z, , 2013. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340: 748751.[Crossref] [Google Scholar]
  41. Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, Ruiz MO, Brawn JD, Goldberg TL, , 2011. Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. Vector Borne Zoonotic Dis 11: 10991105.[Crossref] [Google Scholar]
  42. Crockett RK, Burkhalter K, Mead D, Kelly R, Brown J, Varnado W, Roy A, Horiuchi K, Biggerstaff BJ, Miller B, Nasci R, , 2012. Culex flavivirus and West Nile virus in Culex quinquefasciatus populations in the southeastern United States. J Med Entomol 49: 165174.[Crossref] [Google Scholar]
  43. Kenney J, Solberg OD, Langevin SA, Brault AC, , 2014. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. [Epub ahead of print 2014 Aug 21], doi:10.1099/vir.0.068031-0. [Google Scholar]
  44. Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD, , 2010. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4: e856.[Crossref] [Google Scholar]
  45. Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, Nowotny N, , 2013. Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen Virol 94: 24492457.[Crossref] [Google Scholar]
  46. Zirkel F, Roth H, Kurth A, Drosten C, Ziebuhr J, Junglen S, , 2013. Identification and characterization of genetically divergent members of the newly established family Mesoniviridae . J Virol 87: 63466358.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0330
Loading
/content/journals/10.4269/ajtmh.14-0330
Loading

Data & Media loading...

Supplementary PDF

  • Received : 28 May 2014
  • Accepted : 30 Sep 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error