1921
Volume 92, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In this study, three molecular assays (real-time multiplex polymerase chain reaction [PCR], merozoite surface antigen gene []-multiplex PCR, and the PlasmoNex Multiplex PCR Kit) have been developed for diagnosis of species. In total, 52 microscopy-positive and 20 malaria-negative samples were used in this study. We found that real-time multiplex PCR was the most sensitive for detecting and . The -multiplex PCR assay and the PlasmoNex Multiplex PCR Kit were equally sensitive for diagnosing infection, whereas the PlasmoNex Multiplex PCR Kit and real-time multiplex PCR showed similar sensitivity for detecting . The three molecular assays displayed 100% specificity for detecting malaria samples. We observed no significant differences between -multiplex PCR and the PlasmoNex multiplex PCR kit (McNemar's test: = 0.1489). However, significant differences were observed comparing real-time multiplex PCR with the PlasmoNex Multiplex PCR Kit (McNemar's test: = 0.0044) or real-time multiplex PCR with -multiplex PCR (McNemar's test: = 0.0012).

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.14-0309
2015-01-07
2017-11-22
Loading full text...

Full text loading...

/deliver/fulltext/14761645/92/1/28.html?itemId=/content/journals/10.4269/ajtmh.14-0309&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2012. The World Malaria Report 2012. Geneva: World Health Organization.
  2. Tahar R, Boudin C, Thiery I, Bourgouin C, , 2002. Immune response of Anopheles gambiae to the early sporogonic stages of the human malaria parasite Plasmodium falciparum . EMBO J 21: 66736680.[Crossref]
  3. Barber BE, William T, Grigg MJ, Piera K, Yeo TW, Anstey NM, , 2013. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax . J Clin Microbiol 51: 11181123.[Crossref]
  4. Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW, , 2008. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 20: 440447.[Crossref]
  5. Mayxay M, Pukrittayakamee S, Newton PN, White NJ, , 2004. Mixed-species malaria infections in humans. Trends Parasitol 20: 233240.[Crossref]
  6. Bronzan RN, McMorrow ML, Kachur SP, , 2008. Diagnosis of malaria: challenges for clinicians in endemic and non-endemic regions. Mol Diagn Ther 12: 299306.[Crossref]
  7. O'Meara WP, Barcus M, Wongsrichanalai C, , 2006. Reader technique as a source of variability in determining malaria parasite density by microscopy. Malar J 5: 118.[Crossref]
  8. Hanscheid T, , 2003. Current strategies to avoid misdiagnosis of malaria. Clin Microbiol Infect 9: 497504.[Crossref]
  9. Payne D, , 1988. Use and limitations of light microscopy for diagnosing malaria at the primary health care level. Bull World Health Organ 66: 621626.
  10. Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsull SS, Cox-Singh J, Thomas A, Conway DJ, , 2004. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363: 10171024.[Crossref]
  11. Shokoples SE, Ndao M, Kowalewska-Grochowska K, Yanow SK, , 2009. Multiplexed real-time PCR assay for discrimination of Plasmodium species with improved sensitivity for mixed infections. J Clin Microbiol 47: 975980.[Crossref]
  12. Mixson-Hayden T, Lucchi NW, Udhayakumar V, , 2010. Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection. BMC Res Notes 3: 88.[Crossref]
  13. Mens P, Spieker N, Omar S, Heijnen M, Schalling H, Kager PA, , 2007. Is molecular biology the best alternative for diagnosis of malaria to microscopy? A comparison between microscopy, antigen detection and molecular tests in rural Kenya and urban Tanzania. Trop Med Int Health 12: 238244.
  14. Snounou GS, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.[Crossref]
  15. Rubio JM, Benito A, Berzosa PJ, Roche J, Puente S, Subirats M, Lopez-Velez R, Garcia L, Alavar J, , 1999. Usefulness of seminested multiplex PCR in surveillance of imported malaria in Spain. J Clin Microbiol 37: 32603264.
  16. Padley D, Moody AH, Chiodini PL, Saldanha J, , 2003. Use of a rapid, single round, multiplex PCR to detect malarial parasites and identify the species present. Ann Trop Med Parasitol 97: 131137.[Crossref]
  17. Reller ME, Chen WH, Dalton J, Lichay MA, Dumler JS, , 2013. Multiplex 5′nuclease quantitative real-time PCR for clinical diagnosis of malaria and species level identification and epidemiologic evaluation of malaria-causing parasites, including Plasmodium knowlesi . J Clin Microbiol 51: 29312938.[Crossref]
  18. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, Rahman HA, , 1999. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60: 687692.
  19. Cohen J, , 1960. A coefficient of agreement for nominal scales. Educ Psychol Meas 20: 3746.[Crossref]
  20. Altman DG, , 1991. Practical Statistics for Medical Research. London, United Kingdom: Chapman and Hall.
  21. Vafa M, Troye-Blomberg M, Anchang J, Garcia A, Migot-Nabias F, , 2008. Multiplicity of Plasmodium falciparum infection in asymptomatic children in Senegal: relation to transmission, age and erythrocyte variants. Malar J 7: 17.[Crossref]
  22. Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L, Druilhe P, , 1996. Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans R Soc Trop Med Hyg 90: 1519.[Crossref]
  23. Mueller I, Widmer S, Michel D, Maraga S, McNamara DT, Kiniboro B, Sie A, Smith TA, Zimmerman PA, , 2009. High sensitivity dection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea. Malar J 8: 41.[Crossref]
  24. Mueller I, Zimmerman PA, Reeder JC, , 2007. Plasmodium malariae and Plasmodium ovale– the “bashful” malaria parasites. Trends Parasitol 23: 278283.[Crossref]
  25. Han ET, Watanabe R, Sattabongkot J, Khuntirat B, Sirichaisinthop J, Iriko H, Jin L, Takeo S, Tsuboi T, , 2007. Detection of four Plasmodium species by genus and species- specific loop-mediated isothermal amplification for clinical diagnosis. J Clin Microbiol 45: 25212528.[Crossref]
  26. Poon LL, Wong BW, Ma EH, Chan KH, Chow LM, Abeyewickreme W, Tangpukdee N, Yuen KY, Guan Y, Looareesuwan S, Pieris JS, , 2006. Sensitive and inexpensive molecular test for falciparum malaria: detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification. Clin Chem 52: 303306.[Crossref]
  27. Aonuma H, Suzuki M, Iseki H, Perera N, Nelson B, Igarashi I, Yagi T, Kanuka H, Fukumoto S, , 2008. Rapid identification of Plasmodium-carrying mosquitoes using loop-mediated isothermal amplification. Biochem Biophys Res Commun 376: 671676.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0309
Loading
/content/journals/10.4269/ajtmh.14-0309
Loading

Data & Media loading...

  • Received : 19 May 2014
  • Accepted : 17 Sep 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error