1921
Volume 91, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipitation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and social characteristics.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.14-0239
2014-10-01
2019-04-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/4/677.html?itemId=/content/journals/10.4269/ajtmh.14-0239&mimeType=html&fmt=ahah

References

  1. Sugumaran R, Larson SR, DeGroote JP, , 2009. Spatio-temporal cluster analysis of county-based human West Nile virus incidence in the continental United States. Int J Health Geogr 8: 43.[Crossref] [Google Scholar]
  2. Hayes EB, Komar N, Nasci RS, Montgomery SP, O'Leary DR, Campbell GL, , 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11: 11671173.[Crossref] [Google Scholar]
  3. Wimberly MC, Giacomo P, Kightlinger L, Hildreth MB, , 2013. Spatio-temporal epidemiology of human West Nile virus disease in South Dakota. Int J Environ Res Public Health 10: 55845602.[Crossref] [Google Scholar]
  4. Petersen LR, Brault AC, Nasci RS, , 2013. West Nile virus: review of the literature. JAMA 310: 308315.[Crossref] [Google Scholar]
  5. Martens WJM, Jetten TH, Rotmans J, Niessen LW, , 1995. Climate change and vector-borne diseases: a global modeling perspective. Glob Environ Change 5: 195209.[Crossref] [Google Scholar]
  6. Shaman J, Stieglitz M, Stark C, Le Blancq S, Cane M, , 2002. Using a dynamic hydrology model to predict mosquito abundances in flood and swamp water. Emerg Infect Dis 8: 613. [Google Scholar]
  7. Reisen WK, , 2013. Ecology of West Nile virus in North America. Viruses 5: 20792105.[Crossref] [Google Scholar]
  8. Albright TP, Pidgeon AM, Rittenhouse CD, Clayton MK, Wardlow BD, Flather CH, Culbert PD, Radeloff VC, , 2010. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1: 12.[Crossref] [Google Scholar]
  9. Reisen WK, Fang Y, Martinez VM, , 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43: 309317.[Crossref] [Google Scholar]
  10. Soverow JE, Wellenius GA, Fisman DN, Mittleman MA, , 2009. Infectious Disease in a Warming World: How Weather Influenced West Nile Virus in the United States (2001–2005). Environ Health Perspect 117: 10491052.[Crossref] [Google Scholar]
  11. Chuang TW, Wimberly MC, , 2012. Remote sensing of climatic anomalies and West Nile virus incidence in the northern Great Plains of the United States. PLoS ONE 7: e46882.[Crossref] [Google Scholar]
  12. Chung WM, Buseman CM, Joyner SN, Hughes SM, Fomby TB, Luby JP, Haley RW, , 2013. The 2012 West Nile encephalitis epidemic in Dallas, Texas. JAMA 310: 297307.[Crossref] [Google Scholar]
  13. Landesman WJ, Allan BF, Langerhans RB, Knight TM, Chase JM, , 2007. Inter-annual associations between precipitation and human incidence of West Nile virus in the United States. Vector-Borne Zoonot 7: 337343.[Crossref] [Google Scholar]
  14. Shaman J, Day JF, Komar N, , 2010. Hydrologic conditions describe West Nile virus risk in Colorado. Int J Environ Res Public Health 7: 494508.[Crossref] [Google Scholar]
  15. Bowden SE, Magori K, Drake JM, , 2011. Regional differences in the association between land cover and West Nile virus disease incidence in humans in the United States. Am J Trop Med Hyg 84: 234238.[Crossref] [Google Scholar]
  16. Mitchell KE, , 2004. The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res Atmos 109: D07S90. [Google Scholar]
  17. Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RP, , 2006. Why do we still use stepwise modelling in ecology and behaviour? J Anim Ecol 75: 11821189.[Crossref] [Google Scholar]
  18. Carrascal LM, Galván I, Gordo O, , 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118: 681690.[Crossref] [Google Scholar]
  19. R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  20. Chuang T-W, Hildreth MB, Vanroekel DL, Wimberly MC, , 2011. Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota. J Med Entomol 48: 669679.[Crossref] [Google Scholar]
  21. Wimberly MC, Hildreth MB, Boyte SP, Lindquist E, Kightlinger L, , 2008. Ecological niche of the 2003 West Nile virus epidemic in the northern Great Plains of the United States. PLoS ONE 3: e3744.[Crossref] [Google Scholar]
  22. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, , 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref] [Google Scholar]
  23. Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD, , 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasit Vectors 3: 16.[Crossref] [Google Scholar]
  24. Molaei G, Andreadis TG, Armstrong PM, Bueno R, Jr Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, , 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77: 7381. [Google Scholar]
  25. Morin CW, Comrie AC, , 2013. Regional and seasonal response of a West Nile virus vector to climate change. Proc Natl Acad Sci USA 110: 1562015625.[Crossref] [Google Scholar]
  26. Nelms BM, Fechter-Leggett E, Carroll BD, Macedo P, Kluh S, Reisen WK, , 2013. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J Med Entomol 50: 371378.[Crossref] [Google Scholar]
  27. Anderson JF, Main AJ, , 2006. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the northeastern United States. J Infect Dis 194: 15771579.[Crossref] [Google Scholar]
  28. Tesh RB, Parsons R, Siirin M, Randle Y, Sargent C, Guzman H, Wuithiranyagool T, Higgs S, Vanlandingham DL, Bala AA, , 2004. Year-round West Nile virus activity, Gulf Coast region, Texas and Louisiana. Emerg Infect Dis 10: 1649.[Crossref] [Google Scholar]
  29. Wheeler SS, Vineyard MP, Barker CM, Reisen WK, , 2012. Importance of recrudescent avian infection in West Nile virus overwintering: incomplete antibody neutralization of virus allows infrequent vector infection. J Med Entomol 49: 895902.[Crossref] [Google Scholar]
  30. Eldridge BF, Harris KF, , 1987. Diapause and related phenomena in Culex mosquitoes: their relation to arbovirus disease ecology. , ed. Current Topics in Vector Research. New York, NY: Springer, 128.[Crossref] [Google Scholar]
  31. Bailey CL, Faran ME, Gargan T, Hayes DE, , 1982. Winter survival of blood-fed and nonblood-fed Culex pipiens L. Am J Trop Med Hyg 31: 10541061. [Google Scholar]
  32. Mitchell CJ, , 1979. Winter survival of Culex tarsalis (Diptera: Culicidae) hibernating in mine tunnels in Boulder County, Colorado, USA. J Med Entomol 16: 482487.[Crossref] [Google Scholar]
  33. Lomax JL, , 1968. A study of mosquito mortality relative to temperature and relative humidity in an overwintering site. Proc NJ Mosq Exterm Assoc 55: 8185. [Google Scholar]
  34. Strickman D, , 1988. Rate of oviposition by Culex quinquefasciatus in San Antonio, Texas, during three years. J Am Mosq Control Assoc 4: 339344. [Google Scholar]
  35. Hartley DM, Barker CM, Le Menach A, Niu T, Gaff HD, Reisen WK, , 2012. Effects of temperature on emergence and seasonality of West Nile virus in California. Am J Trop Med Hyg 86: 884894.[Crossref] [Google Scholar]
  36. Gardner AM, Hamer GL, Hines AM, Newman CM, Walker ED, Ruiz MO, , 2012. Weather variability affects abundance of larval Culex (Diptera: Culicidae) in storm water catch basins in suburban Chicago. J Med Entomol 49: 270276.[Crossref] [Google Scholar]
  37. Chuang TW, Henebry GM, Kimball JS, Vanroekel-Patton DL, Hildreth MB, Wimberly MC, , 2012. Satellite microwave remote sensing for environmental modeling of mosquito population dynamics. Remote Sens Environ 125: 147156.[Crossref] [Google Scholar]
  38. Allan BF, Langerhans RB, Ryberg WA, Landesman WJ, Griffin NW, Katz RS, Oberle BJ, Schutzenhofer MR, Smyth KN, de St Maurice A, Clark L, Crooks KR, Hernandez DE, McLean RG, Ostfeld RS, Chase JM, , 2009. Ecological correlates of risk and incidence of West Nile virus in the United States. Oecologia 158: 699708.[Crossref] [Google Scholar]
  39. Hamer GL, Chaves LF, Anderson TK, Kitron UD, Brawn JD, Ruiz MO, Loss SR, Walker ED, Goldberg TL, , 2011. Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission. PLoS ONE 6: e23767.[Crossref] [Google Scholar]
  40. Johnson BJ, Munafo K, Shappell L, Tsipoura N, Robson M, Ehrenfeld J, Sukhdeo MVK, , 2012. The roles of mosquito and bird communities on the prevalence of West Nile virus in urban wetland and residential habitats. Urban Ecosyst 15: 513531.[Crossref] [Google Scholar]
  41. Burkett-Cadena ND, Hassan HK, Eubanks MD, Cupp EW, Unnasch TR, , 2012. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus . Biol Lett 8: 567569.[Crossref] [Google Scholar]
  42. Tucker P, Gilliland J, , 2007. The effect of season and weather on physical activity: a systematic review. Public Health 121: 909922.[Crossref] [Google Scholar]
  43. Kwan JL, Kluh S, Reisen WK, , 2012. Antecedent avian immunity limits tangential transmission of West Nile virus to humans. PLoS ONE 7: e34127.[Crossref] [Google Scholar]
  44. LaDeau SL, Kilpatrick AM, Marra PP, , 2007. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447: 710713.[Crossref] [Google Scholar]
  45. Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K, , 2008. Shifting patterns: malaria dynamics and rainfall variability in an African highland. Proc Biol Sci 275: 123132.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.14-0239
Loading
/content/journals/10.4269/ajtmh.14-0239
Loading

Data & Media loading...

  • Received : 16 Apr 2014
  • Accepted : 17 Jun 2014
  • Published online : 01 Oct 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error