Volume 91, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The expansion of human settlement into wildland areas, including forests in the eastern United States, has resulted in fragmented forest habitat that has been shown to drive higher entomological risk for Lyme disease. We investigated an alternative pathway between fragmentation and Lyme disease, namely whether increased risk of Lyme disease results in a reduced propensity to settle in high-risk areas at the interface of developed and undeveloped lands. We used longitudinal data analyses at the county level to determine whether Lyme disease incidence (LDI) influences the proportion of the population residing in the wildland–urban interface in 12 high LDI states in the eastern United States. We found robust evidence that a higher LDI reduces the proportion of a county's population residing in the wildland–urban interface in high-LDI states. This study provides some of the first evidence of human behavioral responses to Lyme disease risk via settlement decisions.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, , 2008. Global trends in emerging infectious diseases. Nature 451: 990993.[Crossref] [Google Scholar]
  2. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PSK, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT, , 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354: 12571259.[Crossref] [Google Scholar]
  3. Lam SK, Chua KB, , 2002. Nipah virus encephalitis outbreak in Malaysia. Clin Infect Dis 34: S48S51.[Crossref] [Google Scholar]
  4. Wolfe ND, Eitel MN, Gockowski J, Muchaal PK, Nolte C, Tassy Prosser A, Ndongo Torimiro J, Weise SF, Burke DS, , 2000. Deforestation, hunting and the ecology of microbial emergence. Glob Change Hum Health 1: 1025.[Crossref] [Google Scholar]
  5. Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ, Members of the Working Group on Land Us Change and Disease Emergence, , 2004. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112: 10921098.[Crossref] [Google Scholar]
  6. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, McKeever D, Mutua F, Young J, McDermott J, Pfeiffer DU, , 2013. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA 110: 83998404.[Crossref] [Google Scholar]
  7. Desjeux P, , 2001. The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95: 239243.[Crossref] [Google Scholar]
  8. Singh J, Jain DC, Bhatia R, Ichhpujani RL, Harit AK, Panda RC, Tewari KN, Sokhey J, , 2001. Epidemiological characteristics of rabies in Delhi and surrounding areas, 1998. Indian Pediatr 38: 13541360. [Google Scholar]
  9. Ostfeld RS, Keesing F, , 2000. Biodiversity and disease risk: the case of Lyme disease. Conserv Biol 14: 722728.[Crossref] [Google Scholar]
  10. Steere AC, , 2001. Medical progress: Lyme disease. N Engl J Med 345: 115125.[Crossref] [Google Scholar]
  11. Bacon RM, Kugeler KJ, Mead PS, , 2008. Surveillance for Lyme disease–United States, 1992–2006. MMWR Morb Mortal Wkly Rep 57: 19. [Google Scholar]
  12. Spielman A, , 1994. The emergence of Lyme disease and human babesiosis in a changing environment. Ann N Y Acad Sci 740: 146156.[Crossref] [Google Scholar]
  13. Kitron U, Bouseman JK, Jones CJ, , 1991. Use of the ARC/INFO GIS to study the distribution of Lyme disease ticks in an Illinois county. Prev Vet Med 11: 243248.[Crossref] [Google Scholar]
  14. Maupin GO, Fish D, Zultowsky J, Campos EG, Piesman J, , 1991. Landscape ecology of Lyme disease in a residential area of Westchester County, New York. Am J Epidemiol 133: 11051113.[Crossref] [Google Scholar]
  15. Stafford KC, Magnarelli LA, , 1993. Spatial and temporal patterns of Ixodes scapularis (Acari: Ixodidae) in southeastern Connecticut. J Med Entomol 30: 762771.[Crossref] [Google Scholar]
  16. Duffy DC, Clark DD, Campbell SR, Gurney S, Perello R, Simon N, , 1994. Landscape patterns of abundance of Ixodes scapularis (Acari: Ixodidae) on Shelter Island, New York. J Med Entomol 31: 875879.[Crossref] [Google Scholar]
  17. Ostfeld RS, Cepeda OM, Hazler KR, Miller MC, , 1995. Ecology of Lyme disease: habitat associations of ticks (Ixodes scapularis) in a rural landscape. Ecol Appl 5: 353361.[Crossref] [Google Scholar]
  18. Frank DH, Fish D, Moy FH, , 1998. Landscape features associated with Lyme disease risk in a suburban residential environment. Landscape Ecol 13: 2736.[Crossref] [Google Scholar]
  19. Guerra M, Walker E, Jones C, Paskewitz S, Cortinas MR, Stancil A, Beck L, Bobo M, Kitron U, , 2002. Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the north central United States. Emerg Infect Dis 8: 289297.[Crossref] [Google Scholar]
  20. Eisen RJ, Eisen L, Lane RS, , 2006. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Am J Trop Med Hyg 74: 632640. [Google Scholar]
  21. Glass GE, Schwartz BS, Morgan JM, III Johnson DT, Noy PM, Israel E, , 1995. Environmental risk factors for Lyme disease identified with geographic information systems. Am J Public Health 85: 944948.[Crossref] [Google Scholar]
  22. Kitron U, Kazmierczak JJ, , 1997. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145: 558566.[Crossref] [Google Scholar]
  23. Glass GE, Amerasinghe FP, Morgan JM, Scott TW, , 1994. Predicting Ixodes scapularis abundance on white-tailed deer using geographic information systems. Am J Trop Med Hyg 51: 538544. [Google Scholar]
  24. Allan BF, Keesing F, Ostfeld RS, , 2003. Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17: 267272.[Crossref] [Google Scholar]
  25. Lubelczyk CB, Elias SP, Rand PW, Holman MS, Lacombe EH, Smith RP, , 2004. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ Entomol 33: 900906.[Crossref] [Google Scholar]
  26. Brownstein JS, Skelly DK, Holford TR, Fish D, , 2005. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146: 469475.[Crossref] [Google Scholar]
  27. Cromley EK, Cartter ML, Mrozinski RD, Ertel S-H, , 1998. Residential setting as a risk factor for Lyme disease in a hyperendemic region. Am J Epidemiol 147: 472477.[Crossref] [Google Scholar]
  28. Jackson LE, Hilborn ED, Thomas JC, , 2006. Towards landscape design guidelines for reducing Lyme disease risk. Int J Epidemiol 35: 315322.[Crossref] [Google Scholar]
  29. Jackson LE, Levine JF, Hilborn ED, , 2006. A comparison of analysis units for associating Lyme disease with forest-edge habitat. Community Ecol 7: 189197.[Crossref] [Google Scholar]
  30. Wood CL, Lafferty KD, , 2013. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol Evol 28: 239247.[Crossref] [Google Scholar]
  31. Ostfeld RS, Keesing F, , 2013. Straw men don't get Lyme disease: response to Wood and Lafferty. Trends Ecol Evol 28: 502503.[Crossref] [Google Scholar]
  32. Lafferty KD, Wood CL, , 2013. It's a myth that protection against disease is a strong and general service of biodiversity conservation: response to Ostfeld and Keesing. Trends Ecol Evol 28: 503504.[Crossref] [Google Scholar]
  33. Sawyer D, , 1993. Economic and social consequences of malaria in new colonization projects in Brazil. Soc Sci Med 37: 11311136.[Crossref] [Google Scholar]
  34. Sachs J, Malaney P, , 2002. The economic and social burden of malaria. Nature 415: 680685.[Crossref] [Google Scholar]
  35. Smith VK, Deyak TA, , 1975. Measuring the impact of air pollution on property values. J Reg Sci 15: 277288.[Crossref] [Google Scholar]
  36. Kiel KA, McClain KT, , 1995. House prices during siting decision stages: the case of an incinerator from rumor through operation. J Environ Econ Manage 28: 241255.[Crossref] [Google Scholar]
  37. Chattopadhyay S, , 1999. Estimating the demand for air quality: new evidence based on the Chicago housing market. Land Econ 75: 2238.[Crossref] [Google Scholar]
  38. Beron K, Murdoch J, Thayer M, , 2001. The benefits of visibility improvement: new evidence from the Los Angeles metropolitan area. J Real Estate Financ 22: 319337.[Crossref] [Google Scholar]
  39. Won Kim C, Phipps TT, Anselin L, , 2003. Measuring the benefits of air quality improvement: a spatial hedonic approach. J Environ Econ Manage 45: 2439.[Crossref] [Google Scholar]
  40. Hoehn JP, Berger MC, Blomquist GC, , 1987. A hedonic model of interregional wages, rents, and amenity values. J Reg Sci 27: 605620.[Crossref] [Google Scholar]
  41. Kohlhase JE, , 1991. The impact of toxic waste sites on housing values. J Urban Econ 30: 126.[Crossref] [Google Scholar]
  42. Nelson AC, Genereux J, Genereux MM, , 1997. Price effects of landfills on different house value strata. J Urban Plan D-ASCE 123: 5967.[Crossref] [Google Scholar]
  43. Hite D, Chern W, Hitzhusen F, Randall A, , 2001. Property value impacts of an environmental disamenity: the case of landfills. J Real Estate Financ 22: 185202.[Crossref] [Google Scholar]
  44. Folland S, Hough R, , 2000. Externalities of nuclear power plants: further evidence. J Reg Sci 40: 735753.[Crossref] [Google Scholar]
  45. Bockstael NE, , 1996. Modeling economics and ecology: the importance of a spatial perspective. Am J Agric Econ 78: 11681180.[Crossref] [Google Scholar]
  46. Carrión-Flores C, Irwin EG, , 2004. Determinants of residential land-use conversion and sprawl at the rural-urban fringe. Am J Agric Econ 86: 889904.[Crossref] [Google Scholar]
  47. Lubowski RN, Plantinga AJ, Stavins RN, , 2008. What drives land-use change in the United States? A national analysis of landowner decisions. Land Econ 84: 529550.[Crossref] [Google Scholar]
  48. Greenwood MJ, Hunt GL, Rickman DS, Treyz GI, , 1991. Migration, regional equilibrium, and the estimation of compensating differentials. Am Econ Rev 81: 13821390. [Google Scholar]
  49. Plantinga AJ, Detang-Dessendre C, Hunt GL, Piguet V, , 2013. Housing prices and inter-urban migration. Reg Sci Urban Econ 43: 296306.[Crossref] [Google Scholar]
  50. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF, , 2005. The wildland-urban interface in the United States. Ecol Appl 15: 799805.[Crossref] [Google Scholar]
  51. Agriculture USDO, Interior USDOT, 2001. Urban wildland interface communities within the vicinity of federal lands that are at high risk of wildfire. Fed Regist 66: 751777. [Google Scholar]
  52. Homer C, Dewitz J, Fry J, Coan M, Hossain N, Larson C, Herold N, McKerrow A, VanDriel JN, Wickham J, , 2007. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm Eng Remote Sensing 73: 337341. [Google Scholar]
  53. Fry JA, Xian G, Jin S, Dewitz JA, Homer CG, Yang L, Barnes CA, Herold ND, Wickham JD, , 2011. Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm Eng Remote Sensing 77: 858864. [Google Scholar]
  54. Centers for Disease Control and Prevention, 2014. County-Level Reported Cases of Lyme Disease, 1992–2011. Available at: http://www.cdc.gov/lyme/stats/index.html. Accessed February 4, 2014. [Google Scholar]
  55. Wu JJ, Plantinga AJ, , 2003. The influence of public open space on urban spatial structure. J Environ Econ Manage 46: 288309.[Crossref] [Google Scholar]
  56. Diuk-Wasser MA, Hoen AG, Cislo P, Brinkerhoff R, Hamer SA, Rowland M, Cortinas R, Vourc'h G, Melton F, Hickling GJ, Tsao JI, Bunikis J, Barbour AG, Kitron U, Piesman J, Fish D, , 2012. Human risk of infection with Borrelia burgdorferi, the Lyme disease agent, in eastern United States. Am J Trop Med Hyg 86: 320327.[Crossref] [Google Scholar]
  57. Taylor LH, Latham SM, Woolhouse M, , 2001. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356: 983989.[Crossref] [Google Scholar]
  58. Woolhouse M, Gowtage-Sequeria S, , 2005. Host range and emerging and reemerging pathogens. Emerg Infect Dis 11: 18421847.[Crossref] [Google Scholar]
  59. Keiser J, Singer BH, Utzinger J, , 2005. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5: 695708.[Crossref] [Google Scholar]
  60. Sims LD, Peiris M, , 2012. One health: the Hong Kong experience with avian influenza. Curr Top Microbiol Immunol 365: 281298. [Google Scholar]
  61. Ostfeld R, , 2011. Lyme Disease: The Ecology of a Complex System. New York: Oxford University Press. [Google Scholar]
  62. Coluzzi M, , 1994. Malaria and the Afrotropical ecosystems: impact of man-made environmental changes. Parassitologia 36: 223227. [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 25 Mar 2014
  • Accepted : 13 Jun 2014
  • Published online : 01 Oct 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error