Volume 90, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Root is the most important malaria vector in the Amazonia region of South America. However, continuous propagation of in the laboratory has been elusive, limiting entomological, genetic/genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least to the F6 generation. Comparison of feeding of F4 and F5 to F1 generation mosquitoes showed the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia and gametocytemia, confirming vectorial capacity in the colonized mosquitoes. These results provide new avenues for research on biology and study of interactions.

[open-access] This is an Open Access article distributed under the terms of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hiwat H, Bretas G, , 2011. Ecology of Anopheles darlingi root with respect to vector importance: a review. Parasit Vectors 4: 177.[Crossref] [Google Scholar]
  2. Marrelli MT, Honorio NA, Flores-Mendoza C, Lourenco-de-Oliveira R, Marinotti O, Kloetzel JK, , 1999. Comparative susceptibility of two members of the Anopheles oswaldoi complex, An. oswaldoi and An. konderi, to infection by Plasmodium vivax . Trans R Soc Trop Med Hyg 93: 381384.[Crossref] [Google Scholar]
  3. Bharti AR, Chuquiyauri R, Brouwer KC, Stancil J, Lin J, Llanos-Cuentas A, Vinetz JM, , 2006. Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg 75: 610616. [Google Scholar]
  4. Abeles SR, Chuquiyauri R, Tong C, Vinetz JM, , 2013. Human host-derived cytokines associated with Plasmodium vivax transmission from acute malaria patients to Anopheles darlingi mosquitoes in the Peruvian Amazon. Am J Trop Med Hyg 88: 11301137.[Crossref] [Google Scholar]
  5. Klein TA, Tada MS, Lima JB, , 1991. Infection of Anopheles darlingi fed on patients with Plasmodium falciparum before and after treatment with quinine or quinine plus tetracycline. Am J Trop Med Hyg 44: 604608. [Google Scholar]
  6. Klein TA, Tada MS, Lima JB, Katsuragawa TH, , 1991. Infection of Anopheles darlingi fed on patients infected with Plasmodium vivax before and during treatment with chloroquine in Costa Marques, Rondonia, Brazil. Am J Trop Med Hyg 45: 471478. [Google Scholar]
  7. Klein TA, Lima JB, Tada MS, Miller R, , 1991. Comparative susceptibility of anopheline mosquitoes in Rondonia, Brazil to infection by Plasmodium vivax . Am J Trop Med Hyg 45: 463470. [Google Scholar]
  8. Hiwat H, De Rijk M, Andriessen R, Koenraadt CJ, Takken W, , 2011. Evaluation of methods for sampling the malaria vector Anopheles darlingi (Diptera, Culicidae) in Suriname and the relation with its biting behavior. J Med Entomol 48: 10391046.[Crossref] [Google Scholar]
  9. Gigioli G, , 1947. Laboratory colony of Anopheles darlingi . J Natl Malar Soc 6: 159164. [Google Scholar]
  10. Aramburu Guarda J, Ramal Asayag C, Witzig R, , 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5: 209215.[Crossref] [Google Scholar]
  11. Roper MH, Torres RS, Goicochea CG, Andersen EM, Guarda JS, Calampa C, Hightower AW, Magill AJ, , 2000. The epidemiology of malaria in an epidemic area of the Peruvian Amazon. Am J Trop Med Hyg 62: 247256. [Google Scholar]
  12. Parker BS, Paredes Olortegui M, Penataro Yori P, Escobedo K, Florin D, Rengifo Pinedo S, Cardenas Greffa R, Capcha Vega L, Rodriguez Ferrucci H, Pan WK, Banda Chavez C, Vinetz JM, Kosek M, , 2013. Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar J 12: 178.[Crossref] [Google Scholar]
  13. Correa RR, Ferreira E, Ramalho GR, Zaia L, , 1970. Informe sobre uma colônia de Anopheles darlingi—São Paulo. Proceedings of the Congresso Brasileiro de Higiene, Sao Paulo, Brazil, March 1, 1970. [Google Scholar]
  14. Buralli GM, Bergo ES, , 1988. Maintenance of Anopheles darlingi root, 1926 colony, in the laboratory. Rev Inst Med Trop Sao Paulo 30: 157164.[Crossref] [Google Scholar]
  15. Benedict MQ, Knols BG, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS, , 2009. Colonisation and mass rearing: learning from others. Malar J 8 (Suppl 2): S4.[Crossref] [Google Scholar]
  16. Lounibos LP, Lima DC, Lourenco-de-Oliveira R, , 1998. Prompt mating of released Anopheles darlingi in western Amazonian Brazil. J Am Mosq Control Assoc 14: 210213. [Google Scholar]
  17. Marinotti O, Cerqueira GC, de Almeida LG, Ferro MI, Loreto EL, Zaha A, Teixeira SM, Wespiser AR, Almeida E Silva A, Schlindwein AD, Pacheco AC, Silva AL, Graveley BR, Walenz BP, Lima B de A, Ribeiro CA, Nunes-Silva CG, de Carvalho CR, Soares CM, de Menezes CB, Matiolli C, Caffrey D, Araújo DA, de Oliveira DM, Golenbock D, Grisard EC, Fantinatti-Garboggini F, de Carvalho FM, Barcellos FG, Prosdocimi F, May G, Azevedo Junior GM, Guimarães GM, Goldman GH, Padilha IQ, Batista J da S, Ferro JA, Ribeiro JM, Fietto JL, Dabbas KM, Cerdeira L, Agnez-Lima LF, Brocchi M, de Carvalho MO, Teixeira M de M, Diniz Maia M de M, Goldman MH, Cruz Schneider MP, Felipe MS, Hungria M, Nicolás MF, Pereira M, Montes MA, Cantão ME, Vincentz M, Rafael MS, Silverman N, Stoco PH, Souza RC, Vicentini R, Gazzinelli RT, Neves R de O, Silva R, Astolfi-Filho S, Maciel TE, Urményi TP, Tadei WP, Camargo EP, de Vasconcelos AT, , 2013. The genome of Anopheles darlingi, the main neotropical malaria vector. Nucleic Acids Res 41: 73877400.[Crossref] [Google Scholar]
  18. Toure YT, Duombo O, Toure A, Bagayoko M, Diallo M, Dolo A, Vernick KD, Keister DB, Muratova O, Kaslow DC, , 1998. Gametocyte infectivity by direct mosquito feeds in an area of seasonal malaria transmission: implications for Bancoumana, Mali as a transmission-blocking vaccine site. Am J Trop Med Hyg 59: 481486. [Google Scholar]
  19. Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, Burge R, Coleman RE, , 2003. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 69: 529535. [Google Scholar]
  20. Faran ME, Linthicum KJ, , 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq Syst 13: 181. [Google Scholar]
  21. Villarreal C, Arredondo-Jimenez JI, Rodriguez MH, Ulloa A, , 1998. Colonization of Anopheles pseudopunctipennis from Mexico. J Am Mosq Control Assoc 14: 369372. [Google Scholar]
  22. Lardeux F, Quispe V, Tejerina R, Rodriguez R, Torrez L, Bouchité B, Chávez T, , 2007. Laboratory colonization of Anopheles pseudopunctipennis (Diptera: Culicidae) without forced mating. C R Biol 330: 571575.[Crossref] [Google Scholar]
  23. Baker RH, , 1964. Mating problems as related to the establishment and maintenance of laboratory colonies of mosquitos. Bull World Health Organ 31: 467468. [Google Scholar]
  24. Howell PI, Knols BG, , 2009. Male mating biology. Malar J 8 (Suppl 2): S8.[Crossref] [Google Scholar]
  25. Norris DE, Shurtleff AC, Toure YT, Lanzaro GC, , 2001. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae ss (Diptera: Culicidae). J Med Entomol 38: 336340.[Crossref] [Google Scholar]
  26. Brooke BD, Hunt RH, Chandre F, Carnevale P, Coetzee M, , 2002. Stable chromosomal inversion polymorphisms and insecticide resistance in the malaria vector mosquito Anopheles gambiae (Diptera: Culicidae). J Med Entomol 39: 568573.[Crossref] [Google Scholar]
  27. Mirabello L, , 2007. Molecular Population Genetics of the Malaria Vector Anopheles Darlingi Throughout Central and South America Using Mitochondrial, Nuclear, and Microsatellite Markers. Albany, NY: State University of New York. [Google Scholar]
  28. Mirabello L, Conn JE, , 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity (Edinb) 96: 311321.[Crossref] [Google Scholar]
  29. Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin DM, Quiñones ML, Póvoa MM, Linton YM, , 2012. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of neotropical malaria vectors. Parasit Vectors 5: 44.[Crossref] [Google Scholar]
  30. Alves FP, Gil LH, Marrelli MT, Ribolla PE, Camargo EP, Da Silva LH, , 2005. Asymptomatic carriers of Plasmodium spp. as infection source for malaria vector mosquitoes in the Brazilian Amazon. J Med Entomol 42: 777779.[Crossref] [Google Scholar]
  31. Flannery EL, Chatterjee AK, Winzeler EA, , 2013. Antimalarial drug discovery—approaches and progress towards new medicines. Nat Rev Microbiol 11: 849862.[Crossref] [Google Scholar]
  32. Zamora Perea E, Balta Leon R, Palomino Salcedo M, Brogdon WG, Devine GJ, , 2009. Adaptation and evaluation of the bottle assay for monitoring insecticide resistance in disease vector mosquitoes in the Peruvian Amazon. Malar J 8: 208.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 05 Dec 2013
  • Accepted : 13 Jan 2014
  • Published online : 02 Apr 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error