Volume 90, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Patients with acute uncomplicated malaria have no evident neurologic disorder, vital organ dysfunction, or other severe manifestations of infection. Nonetheless, parasitized erythrocytes cytoadhere to the endothelium throughout their microvasculature, especially within the brain. We aimed to determine if 3 Tesla magnetic resonance imaging studies could detect evidence of cerebral abnormalities in these patients. Within 24 hours of admission, initial magnetic resonance imaging examinations found a lesion with restricted water diffusion in the mid-portion of the splenium of the corpus callosum of 4 (40%) of 10 male patients. The four patients who had a splenial lesion initially had evidence of more severe hemolysis and thrombocytopenia than the six patients who had no apparent abnormality. Repeat studies four weeks later found no residua of the lesions and resolution of the hematologic differences. These observations provide evidence for acute cerebral injury in the absence of severe or cerebral malaria.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Idro R, Marsh K, John CC, Newton CR, , 2010. Cerebral malaria: mechanisms of brain injury and strategies for improved neurocognitive outcome. Pediatr Res 68: 267274.[Crossref] [Google Scholar]
  2. Miller LH, Ackerman HC, Su XZ, Wellems TE, , 2013. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 19: 156167.[Crossref] [Google Scholar]
  3. Pongponratn E, Turner GD, Day NP, Phu NH, Simpson JA, Stepniewska K, Mai NT, Viriyavejakul P, Looareesuwan S, Hien TT, Ferguson DJ, White NJ, , 2003. An ultrastructural study of the brain in fatal Plasmodium falciparum malaria. Am J Trop Med Hyg 69: 345359. [Google Scholar]
  4. Cunnington AJ, Bretscher MT, Nogaro SI, Riley EM, Walther M, , 2013. Comparison of parasite sequestration in uncomplicated and severe childhood Plasmodium falciparum malaria. J Infect 67: 220230.[Crossref] [Google Scholar]
  5. Rowe JA, Claessens A, Corrigan RA, Arman M, , 2009. Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11: e16.[Crossref] [Google Scholar]
  6. Carter JA, Mung'ala-Odera V, Neville BG, Murira G, Mturi N, Musumba C, Newton CR, , 2005. Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry 76: 476481.[Crossref] [Google Scholar]
  7. Medana IM, Esiri MM, , 2003. Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126: 515530.[Crossref] [Google Scholar]
  8. Medana IM, Lindert RB, Wurster U, Hien TT, Day NP, Phu NH, Mai NT, Chuong LV, Chau TT, Turner GD, Farrar JJ, White NJ, , 2005. Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans R Soc Trop Med Hyg 99: 610617.[Crossref] [Google Scholar]
  9. Medana IM, Idro R, Newton CR, , 2007. Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J Neurosci 258: 9398. [Google Scholar]
  10. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM, , 2013. Malaria. Lancet. Aug 15 [Epub ahead of print]. doi:10.1016/S0140-6736(13)60024-0. [Google Scholar]
  11. Birbeck GL, Beare N, Lewallen S, Glover SJ, Molyneux ME, Kaplan PW, Taylor TE, , 2010. Identification of malaria retinopathy improves the specificity of the clinical diagnosis of cerebral malaria: findings from a prospective cohort study. Am J Trop Med Hyg 82: 231.[Crossref] [Google Scholar]
  12. Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, Kamiza S, Molyneux M, Taylor TE, , 2011. The neuropathology of fatal cerebral malaria in malawian children. Am J Pathol 178: 21462158.[Crossref] [Google Scholar]
  13. Milner DA, Valim C, Luo R, Playforth KB, Kamiza S, Molyneux ME, Seydel KB, Taylor TE, , 2012. Supraorbital postmortem brain sampling for definitive quantitative confirmation of cerebral sequestration of Plasmodium falciparum parasites. J Infect Dis 205: 16011606.[Crossref] [Google Scholar]
  14. Kampondeni SD, Potchen MJ, Beare NA, Seydel KB, Glover SJ, Taylor TE, Birbeck GL, , 2013. MRI findings in a cohort of brain injured survivors of pediatric cerebral malaria. Am J Trop Med Hyg 88: 542546.[Crossref] [Google Scholar]
  15. Potchen MJ, Kampondeni SD, Seydel KB, Birbeck GL, Hammond CA, Bradley WG, DeMarco JK, Glover SJ, Ugorji JO, Latourette MT, Siebert JE, Molyneux ME, Taylor TE, , 2012. Acute brain MRI findings in 120 Malawian children with cerebral malaria: new insights into an ancient disease. AJNR Am J Neuroradiol 33: 17401746.[Crossref] [Google Scholar]
  16. World Health Organization, 2013. Management of Severe Malaria: A Practical Handbook. Geneva: World Health Organization. [Google Scholar]
  17. Looareesuwan S, Laothamatas J, Brown TR, Brittenham GM, , 2009. Cerebral malaria: a new way forward with magnetic resonance imaging (MRI). Am J Trop Med Hyg 81: 545547.[Crossref] [Google Scholar]
  18. World Health Organization, 2000. Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 94 (Suppl 1): S1S90. [Google Scholar]
  19. World Health Organization, 2010. Guidelines for the Treatment of Malaria. Geneva: World Health Organization. [Google Scholar]
  20. Hantson P, Hernalsteen D, Cosnard G, , 2010. Reversible splenial lesion syndrome in cerebral malaria. J Neuroradiol 37: 243246.[Crossref] [Google Scholar]
  21. Vyas S, Gupta V, Hondappanavar A, Sakhuja V, Bhardwaj N, Singh P, Khandelwal N, , 2012. Magnetic resonance imaging of cerebral malaria. J Emerg Med 42: e117e119.[Crossref] [Google Scholar]
  22. Yadav P, Sharma R, Kumar S, Kumar U, , 2008. Magnetic resonance features of cerebral malaria. Acta Radiol 49: 566569.[Crossref] [Google Scholar]
  23. Polster T, Hoppe M, Ebner A, , 2001. Transient lesion in the splenium of the corpus callosum: three further cases in epileptic patients and a pathophysiological hypothesis. J Neurol Neurosurg Psychiatry 70: 459463.[Crossref] [Google Scholar]
  24. Takanashi J, Imamura A, Fumio H, Terada H, , 2010. Differences in the time course of splenial and white matter lesions in clinically mild encephalitis/encephalopathy with a reversible splenial lesion (MERS). J Neurol Sci 292: 2427.[Crossref] [Google Scholar]
  25. Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J, , 1998. High-altitude cerebral edema evaluated with magnetic resonance imaging: clinical correlation and pathophysiology. JAMA 280: 19201925.[Crossref] [Google Scholar]
  26. Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, Steiner T, Bartsch P, Knauth M, , 2007. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab 27: 10641071.[Crossref] [Google Scholar]
  27. Roach RC, Hackett PH, , 2001. Frontiers of hypoxia research: acute mountain sickness. J Exp Biol 204: 31613170. [Google Scholar]
  28. Medana IM, Day NP, Hien TT, Mai NT, Bethell D, Phu NH, Farrar J, Esiri MM, White NJ, Turner GD, , 2002. Axonal injury in cerebral malaria. Am J Pathol 160: 655666.[Crossref] [Google Scholar]
  29. Kakou M, Destrieux C, Velut S, , 2000. Microanatomy of the pericallosal arterial complex. J Neurosurg 93: 667675.[Crossref] [Google Scholar]
  30. Bartynski WS, Boardman JF, Zeigler ZR, Shadduck RK, Lister J, , 2006. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am J Neuroradiol 27: 21792190. [Google Scholar]
  31. Klatzo I, , 1987. Pathophysiological aspects of brain edema. Acta Neuropathol 72: 236239.[Crossref] [Google Scholar]
  32. Chotivanich K, Sritabal J, Udomsangpetch R, Newton P, Stepniewska KA, Ruangveerayuth R, Looareesuwan S, Roberts DJ, White NJ, , 2004. Platelet-induced autoagglutination of Plasmodium falciparum-infected red blood cells and disease severity in Thailand. J Infect Dis 189: 10521055.[Crossref] [Google Scholar]
  33. Pain A, Ferguson DJ, Kai O, Urban BC, Lowe B, Marsh K, Roberts DJ, , 2001. Platelet-mediated clumping of Plasmodium falciparum-infected erythrocytes is a common adhesive phenotype and is associated with severe malaria. Proc Natl Acad Sci USA 98: 18051810.[Crossref] [Google Scholar]
  34. Roberts DJ, Pain A, Kai O, Kortok M, Marsh K, , 2000. Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet 355: 14271428.[Crossref] [Google Scholar]
  35. Miao WM, Vasile E, Lane WS, Lawler J, , 2001. CD36 associates with CD9 and integrins on human blood platelets. Blood 97: 16891696.[Crossref] [Google Scholar]
  36. Nakamura K, Hasler T, Morehead K, Howard RJ, Aikawa M, , 1992. Plasmodium falciparum-infected erythrocyte receptor(s) for CD36 and thrombospondin are restricted to knobs on the erythrocyte surface. J Histochem Cytochem 40: 14191422.[Crossref] [Google Scholar]
  37. Wassmer SC, Lepolard C, Traore B, Pouvelle B, Gysin J, Grau GE, , 2004. Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 189: 180189.[Crossref] [Google Scholar]
  38. Fabri M, Del Pesce M, Paggi A, Polonara G, Bartolini M, Salvolini U, Manzoni T, , 2005. Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Brain Res Cogn Brain Res 24: 7380.[Crossref] [Google Scholar]
  39. Gazzaniga MS, , 1995. Principles of human brain organization derived from split-brain studies. Neuron 14: 217228.[Crossref] [Google Scholar]
  40. Lee ST, Jung YM, Na DL, Park SH, Kim M, , 2005. Corpus callosum atrophy in Wernicke's encephalopathy. J Neuroimaging 15: 367372.[Crossref] [Google Scholar]
  41. Dugbartey AT, Spellacy FJ, Dugbartey MT, , 1998. Somatosensory discrimination deficits following pediatric cerebral malaria. Am J Trop Med Hyg 59: 393396. [Google Scholar]
  42. Idro R, Jenkins NE, Newton CR, , 2005. Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4: 827840.[Crossref] [Google Scholar]
  43. Carter JA, Neville BG, White S, Ross AJ, Otieno G, Mturi N, Musumba C, Newton CR, , 2004. Increased prevalence of epilepsy associated with severe falciparum malaria in children. Epilepsia 45: 978981.[Crossref] [Google Scholar]
  44. Carter JA, Lees JA, Gona JK, Murira G, Rimba K, Neville BG, Newton CR, , 2006. Severe falciparum malaria and acquired childhood language disorder. Dev Med Child Neurol 48: 5157.[Crossref] [Google Scholar]
  45. Warrell DA, , 1997. Cerebral malaria: clinical features, pathophysiology and treatment. Ann Trop Med Parasitol 91: 875884. [Google Scholar]
  46. Medana IM, Chaudhri G, Chan-Ling T, Hunt NH, , 2001. Central nervous system in cerebral malaria: ‘Innocent bystander’ or active participant in the induction of immunopathology? Immunol Cell Biol 79: 101120.[Crossref] [Google Scholar]
  47. Hay SI, Guerra CA, Tatem AJ, Noor AM, Snow RW, , 2004. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect Dis 4: 327336.[Crossref] [Google Scholar]
  48. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD, , 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.[Crossref] [Google Scholar]
  49. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, , 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434: 214217.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 15 Nov 2013
  • Accepted : 07 Feb 2014
  • Published online : 04 Jun 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error