Volume 92, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Sylvatic arboviruses have been isolated in Senegal over the last 50 years. The ecological drivers of the pattern and frequency of virus infection in these species are largely unknown. We used time series analysis and Bayesian hierarchical count modeling on a long-term arbovirus dataset to test associations between mosquito abundance, weather variables, and the frequency of isolation of dengue, yellow fever, chikungunya, and Zika viruses. We found little correlation between mosquito abundance and viral isolations. Rainfall was a negative predictor of dengue virus (DENV) isolation but a positive predictor of Zika virus isolation. Temperature was a positive predictor of yellow fever virus (YFV) isolations but a negative predictor of DENV isolations. We found slight interference between viruses, with DENV negatively associated with concurrent YFV isolation and YFV negatively associated with concurrent isolation of chikungunya virus. These findings begin to characterize some of the ecological associations of sylvatic arboviruses with each other and climate and mosquito abundance.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Vasilakis N, Cardosa J, Hanley KA, Holmes EC, Weaver SC, , 2011. Fever from the forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9: 532541.[Crossref] [Google Scholar]
  2. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D, , 1999. Vectors of chikungunya virus in Senegal: current data and transmission cycles. Am J Trop Med Hyg 60: 281286. [Google Scholar]
  3. Diallo M, Ba Y, Sall AA, Diop OM, Ndione JA, Mondo M, Girault L, Mathiot C, , 2003. Amplification of the sylvatic cycle of dengue virus type 2, Senegal, 1999–2000: entomologic findings and epidemiologic considerations. Emerg Infect Dis 9: 362367.[Crossref] [Google Scholar]
  4. Althouse BM, Lessler J, Sall AA, Diallo M, Hanley KA, Watts DM, Weaver SC, Cummings DA, , 2012. Synchrony of sylvatic dengue isolations: a multi-host, multi-vector SIR model of dengue virus transmission in Senegal. PLoS Negl Trop Dis 6: e1928.[Crossref] [Google Scholar]
  5. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143152. [Google Scholar]
  6. Focks DA, Daniels E, Haile DG, Keesling JE, , 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489506. [Google Scholar]
  7. Lambrechts L, Paajimans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, , 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74607465.[Crossref] [Google Scholar]
  8. Bellan SE, , 2010. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS ONE 5: e10165.[Crossref] [Google Scholar]
  9. Chan M, Johansson MA, , 2012. The incubation periods of dengue viruses. PLoS ONE 7: e50972.[Crossref] [Google Scholar]
  10. Davis NC, , 1932. The effect of various temperatures in modifying the extrinsic incubation period of the yellow fever virus in Aedes aegypti . Am J Epidemiol 16: 163176.[Crossref] [Google Scholar]
  11. Delatte H, Gimonneau G, Triboire A, Fontenille D, , 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikungunya and dengue in the Indian Ocean. J Med Entomol 46: 3341.[Crossref] [Google Scholar]
  12. Alto BW, Juliano SA, , 2001. Precipitation and temperature effects on populations of Aedes albopictus (diptera: Culicidae): implications for range expansion. J Med Entomol 38: 646656.[Crossref] [Google Scholar]
  13. Diallo M, Sall AA, Moncayo AC, Ba Y, Fernandez Z, Ortiz D, Coffey LL, Mathiot C, Tesh RB, Weaver SC, , 2005. Potential role of sylvatic and domestic African mosquito species in dengue emergence. Am J Trop Med Hyg 73: 445449. [Google Scholar]
  14. Digoutte J, Calvo-Wilson M, Mondo M, Traore-Lamizana M, Adam F, , 1992. Continous cell lines and immune ascitic fluid pools in arbovirus detection. Res Virol 143: 417422.[Crossref] [Google Scholar]
  15. Service MW, , 1993. Mosquito Ecology: Field Sampling Methods, 2nd ed. London, United Kingdom: Elsevier Applied Science. [Google Scholar]
  16. Buck AL, , 1981. New equations for computing vapor pressure and enhancement factor. J Appl Meteorol 20: 15271532.[Crossref] [Google Scholar]
  17. Chatfield C, , 2004. The Analysis of Time Series: An Introduction, 6th ed. Boca Raton, FL: Chapaman & Hall/CRC. [Google Scholar]
  18. Venables WN, Ripley BD, , 2002. Modern Applied Statistics with S. New York, NY: Springer.[Crossref] [Google Scholar]
  19. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE, , 2011. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models. New York, NY: Springer. [Google Scholar]
  20. Gelman A, Hill J, , 2006. Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge, England: Cambridge University Press.[Crossref] [Google Scholar]
  21. Tun-Lin W, Burkot TR, Kay BH, , 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in North Queensland, Australia. Med Vet Entomol 14: 3137.[Crossref] [Google Scholar]
  22. Black WC, 4th Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes Muñoz M, Farfán-Alé JA, Olson KE, Beaty BJ, , 2002. Flavivirus susceptibility in Aedes aegypti . Arch Med Res 33: 379388.[Crossref] [Google Scholar]
  23. Jupp PG, Kemp A, , 2002. Laboratory vector competence experiments with yellow fever virus and five south African mosquito species including Aedes aegypti . Trans R Soc Trop Med Hyg 96: 493498.[Crossref] [Google Scholar]
  24. Diallo M, Ba Y, Faye O, Soumare ML, Dia I, Sall AA, , 2008. Vector competence of Aedes aegypti populations from Senegal for sylvatic and epidemic dengue 2 virus isolated in West Africa. Trans R Soc Trop Med Hyg 102: 493498.[Crossref] [Google Scholar]
  25. Sylla M, Bosio C, Urdaneta-Marquez L, Ndiaye M, Black WC, 4th, 2009. Gene flow, subspecies composition, and dengue virus-2 susceptibility among Aedes aegypti collections in Senegal. PLoS Negl Trop Dis 3: e408.[Crossref] [Google Scholar]
  26. Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RRG, Candelario JR, Cruz DJM, Mapua CA, Hasebe F, Igarashi A, Natividad FF, , 2003. Distribution of three arbovirus antibodies among monkeys (Macaca fascicularis) in the Philippines. J Med Primatol 32: 8994.[Crossref] [Google Scholar]
  27. Cook S, Diallo M, Sall AA, Cooper A, Holmes EC, , 2005. Mitochondrial markers for molecular identification of Aedes mosquitoes (diptera: Culicidae) involved in transmission of arboviral disease in West Africa. J Med Entomol 42: 1928.[Crossref] [Google Scholar]
  28. Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, Su H-J, , 2009. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 22242233.[Crossref] [Google Scholar]
  29. Kurane I, Brinton MA, Samson AL, Ennis FA, , 1991. Dengue virus-specific, human cd4+ cd8- cytotoxic t-cell clones: multiple patterns of virus cross-reactivity recognized by ns3-specific t-cell clones. J Virol 65: 18231828. [Google Scholar]
  30. Monath TP, , 2001. Yellow fever: an update. Lancet Infect Dis 1: 1120.[Crossref] [Google Scholar]
  31. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR, , 2008. Genetic and serologic properties of zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14: 12321239.[Crossref] [Google Scholar]
  32. Hayes EB, , 2009. Zika virus outside Africa. Emerg Infect Dis 15: 13471350.[Crossref] [Google Scholar]
  33. Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N, , 2013. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect Genet Evol 19: 292311.[Crossref] [Google Scholar]
  34. Fragkoudis R, Attarzadeh-Yazdi G, Nash AA, Fazakerley JK, Kohl A, , 2009. Advances in dissecting mosquito innate immune responses to arbovirus infection. J Gen Virol 90: 20612072.[Crossref] [Google Scholar]
  35. Cornet M, Chateau R, Valade M, Dieng P, Raymond H, Lorand A, , 1978. Données bio-écologiques sur les vecteurs potentiels du. Virus amaril au Sénégal oriental. Rôle des différentes espéces dans la transmission du virus. Cah Orstom (Entomol méd Parasitol) 16: 315341. [Google Scholar]
  36. Vasilakis N, Tesh RB, Weaver SC, , 2008. Sylvatic dengue virus type 2 activity in humans, Nigeria, 1966. Emerg Infect Dis 14: 502504.[Crossref] [Google Scholar]
  37. Zeller HG, Traoré-Lamizana M, Monlun E, Hervy JP, Mondo M, Digoutte JP, , 1992. Dengue-2 virus isolation from humans during an epizootic in southeastern Senegal in November, 1990. Res Virol 143: 101102.[Crossref] [Google Scholar]
  38. Cardosa J, Ooi MH, Tio PH, Perera D, Holmes EC, Bibi K, Abdul Manap Z, , 2009. Dengue virus serotype 2 from a sylvatic lineage isolated from a patient with dengue hemorrhagic fever. PLoS Negl Trop Dis 4: e423.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 24 Oct 2013
  • Accepted : 11 Feb 2014
  • Published online : 07 Jan 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error