1921
Volume 92, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Epidemic cholera was reported in Haiti in 2010, with no information available on the occurrence or geographic distribution of toxigenic in Haitian waters. In a series of field visits conducted in Haiti between 2011 and 2013, water and plankton samples were collected at 19 sites. was detected using culture, polymerase chain reaction, and direct viable count methods (DFA-DVC). Cholera toxin genes were detected by polymerase chain reaction in broth enrichments of samples collected in all visits except March 2012. Toxigenic was isolated from river water in 2011 and 2013. Whole genome sequencing revealed that these isolates were a match to the outbreak strain. The DFA-DVC tests were positive for O1 in plankton samples collected from multiple sites. Results of this survey show that toxigenic could be recovered from surface waters in Haiti more than 2 years after the onset of the epidemic.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.13-0601
2015-01-07
2019-01-17
Loading full text...

Full text loading...

/deliver/fulltext/14761645/92/1/118.html?itemId=/content/journals/10.4269/ajtmh.13-0601&mimeType=html&fmt=ahah

References

  1. Faruque SM, Albert MJ, Mekalanos JJ, , 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae . Microbiol Mol Biol Rev 62: 1301. [Google Scholar]
  2. WHO/United Nations Children's Fund JMPfWSaS, 2013. Estimates on the Use of Water Sources and Sanitation Facilities. Available at: http://www.wssinfo.org/documents-links/documents/?tx_displaycontroller[type]=country_files. Accessed July 15, 2013. [Google Scholar]
  3. Jenson D, Szabo V, Duke FH, , 2011. Cholera in Haiti and other Caribbean regions, 19th Century. Emerg Infect Dis 17: 21302135.[Crossref] [Google Scholar]
  4. Barzilay EJ, Schaad N, Magloire R, Mung KS, Boncy J, Dahourou GA, Mintz ED, Steenland MW, Vertefeuille JF, Tappero JW, , 2013. Cholera surveillance during the Haiti epidemic–the first 2 years. N Engl J Med 368: 599609.[Crossref] [Google Scholar]
  5. Hill VR, Cohen N, Kahler AM, Jones JL, Bopp CA, Marano N, Tarr CL, Garrett NM, Boncy J, Henry A, Gomez GA, Wellman M, Curtis M, Freeman MM, Turnsek M, Benner RA, Dahourou G, Espey D, DePaola A, Tappero JW, Handzel T, Tauxe RV, , 2011. Toxigenic Vibrio cholerae O1 in water and seafood, Haiti. Emerg Infect Dis 17: 21472150.[Crossref] [Google Scholar]
  6. Alam MT, Weppelmann TA, Weber CD, Johnson JA, Rashid MH, Birch CS, Brumback BA, de Rochars V, Morris JG, Ali A, , 2014. Monitoring water sources for environmental reservoirs of toxigenic Vibrio cholerae O1, Haiti. Emerg Infect Dis 20: 356363.[Crossref] [Google Scholar]
  7. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR, , 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45: 275283. [Google Scholar]
  8. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR, , 1990. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56: 19771980. [Google Scholar]
  9. Colwell RR, Brayton PR, Grimes DJ, Roszak DB, Huq SA, Palmer LM, , 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment–implications for release of genetically engineered microorganisms. Biotechnology (N Y) 3: 817820.[Crossref] [Google Scholar]
  10. Brayton PR, Tamplin ML, Huq A, Colwell RR, , 1987. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent antibody direct viable count. Appl Environ Microbiol 53: 28622865. [Google Scholar]
  11. Chowdhury MA, Xu B, Montilla R, Hasan JA, Huq A, Colwell RR, , 1995. A simplified immunofluorescence technique for detection of viable cells of Vibrio cholerae O1 and O139. J Microbiol Methods 24: 165170.[Crossref] [Google Scholar]
  12. Blackstone GM, Nordstrom JL, Bowen MD, Meyer RF, Imbro P, DePaola A, , 2007. Use of a real time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. J Microbiol Methods 68: 254259.[Crossref] [Google Scholar]
  13. Smith CM, Hill VR, , 2009. Dead-end hollow-fiber ultrafiltration for recovery of diverse microbes from water. Appl Environ Microbiol 75: 52845289.[Crossref] [Google Scholar]
  14. Mull B, Hill VR, , 2012. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration. J Microbiol Methods 91: 429433.[Crossref] [Google Scholar]
  15. Alam M, Sadique A, Nur AH, Bhuiyan NA, Nair GB, Siddique AK, Sack DA, Ahsan S, Huq A, Sack RB, Colwell RR, , 2006. Effect of transport at ambient temperature on detection and isolation of Vibrio cholerae from environmental samples. Appl Environ Microbiol 72: 21852190.[Crossref] [Google Scholar]
  16. Huq A, Haley BJ, Taviani E, Chen A, Hasan NA, Colwell RR, , 2012. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr Prot Microbiol 26: 6A.5.16A.5.51. [Google Scholar]
  17. Hill VR, Kahler AM, Jothikumar N, Johnson TB, Hahn D, Cromeans TL, , 2007. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples. Appl Environ Microbiol 73: 42184225.[Crossref] [Google Scholar]
  18. Bauer A, Rorvik LM, , 2007. A novel multiplex PCR for the identification of Vibrio parahaemolyticus, Vibrio cholerae and Vibrio vulnificus . Lett Appl Microbiol 45: 371375.[Crossref] [Google Scholar]
  19. Hoshino K, Yamasaki S, Mukhopadhyay AK, Chakraborty S, Basu A, Bhattacharya SK, Nair GB, Shimada T, Takeda Y, , 1998. Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic Vibrio cholerae O1 and O139. FEMS Immunol Med Microbiol 20: 201207.[Crossref] [Google Scholar]
  20. Talkington D, Bopp C, Tarr C, Parsons MB, Dahourou G, Freeman M, Joyce K, Turnsek M, Garrett N, Humphrys M, Gomez G, Stroika S, Boncy J, Ochieng B, Oundo J, Klena J, Smith A, Keddy K, Gerner-Smidt P, , 2011. Characterization of toxigenic Vibrio cholerae from Haiti, 2010–2011. Emerg Infect Dis 17: 21222129.[Crossref] [Google Scholar]
  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.[Crossref] [Google Scholar]
  22. Kislyuk AO, Katz LS, Agrawal S, Hagen MS, Conley AB, Jayaraman P, Nelakuditi V, Humphrey JC, Sammons SA, Govil D, Mair RD, Tatti KM, Tondella ML, Harcourt BH, Mayer LW, Jordan IK, , 2010. A computational genomics pipeline for prokaryotic sequencing projects. Bioinformatics 26: 18191826.[Crossref] [Google Scholar]
  23. Darling AC, Mau B, Blattner FR, Perna NT, , 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 13941403.[Crossref] [Google Scholar]
  24. Edgar RC, , 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 24602461.[Crossref] [Google Scholar]
  25. Edgar RC, , 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 17921797.[Crossref] [Google Scholar]
  26. Stamatakis A, , 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 26882690.[Crossref] [Google Scholar]
  27. Liang KY, Zeger SL, , 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 1322.[Crossref] [Google Scholar]
  28. Zeger SL, Liang KY, , 1986. The analysis of discrete and continuous longitudinal data. Biometrics 42: 121130.[Crossref] [Google Scholar]
  29. WHO, 2011. Guidelines for Drinking-Water Quality. Geneva: World Health Organization Library Cataloguing-in-Publication Data. [Google Scholar]
  30. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA, Guo Y, Wang S, Paxinos EE, Orata F, Gladney LM, Stroika S, Folster JP, Rowe L, Freeman MM, Knox N, Frace M, Boncy J, Graham M, Hammer BK, Boucher Y, Bashir A, Hanage WP, Van Domselaar G, Tarr CL, , 2013. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. MBio 4: e00398.[Crossref] [Google Scholar]
  31. Reimer AR, Van Domselaar G, Stroika S, Walker M, Kent H, Tarr C, Talkington D, Rowe L, Olsen-Rasmussen M, Frace M, Sammons S, Dahourou GA, Boncy J, Smith AM, Mabon P, Petkau A, Graham M, Gilmour MW, Gerner-Smidt P, Task VC, , 2011. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa. Emerg Infect Dis 17: 21132121.[Crossref] [Google Scholar]
  32. Huq A, Colwell RR, Rahman R, Ali A, Chowdhury MA, Parveen S, Sack DA, Russekcohen E, , 1990. Detection of Vibrio cholerae O1 in the aquatic environment by fluorescent monoclonal antibody and culture methods. Appl Environ Microbiol 56: 23702373. [Google Scholar]
  33. Gil AI, Louis VR, Rivera IN, Lipp E, Huq A, Lanata CF, Taylor DN, Russek-Cohen E, Choopun N, Sack RB, Colwell RR, , 2004. Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ Microbiol 6: 699706.[Crossref] [Google Scholar]
  34. Colwell RR, Huq A, Wilson ME, Levins R, Spielman A, , 1994. Environmental reservoir of Vibrio cholerae–the causative agent of cholera. , eds. Disease in Evolution: Global Changes and Emergence of Infectious Diseases. New York: New York Academy Sciences, 4454. [Google Scholar]
  35. Baron S, Lesne J, Moore S, Rossignol E, Rebaudet S, Gazin P, Barrais R, Magloire R, Boncy J, Piarroux R, , 2013. No evidence of significant levels of toxigenic V. cholerae O1 in the Haitian aquatic environment during the 2012 rainy season. PLoS Curr 13: 5. [Google Scholar]
  36. Waldor MK, Mekalanos JJ, , 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 19101914.[Crossref] [Google Scholar]
  37. Chakraborty S, Mukhopadhyay AK, Bhadra RK, Ghosh AN, Mitra R, Shimada T, Yamasaki S, Faruque SM, Takeda Y, Colwell RR, Nair GB, , 2000. Virulence genes in environmental strains of Vibrio cholerae . Appl Environ Microbiol 66: 40224028.[Crossref] [Google Scholar]
  38. Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, Sack DA, Nair GB, Mekalanos JJ, , 2004. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA 101: 21232128.[Crossref] [Google Scholar]
  39. Maiti D, Das B, Saha A, Nandy RK, Nair GB, Bhadra RK, , 2006. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology-Sgm 152: 36333641.[Crossref] [Google Scholar]
  40. Morris GK, Merson MH, Huq I, Kibrya AK, Black R, , 1979. Comparison of four plating media for isolating Vibrio cholerae . J Clin Microbiol 9: 7983. [Google Scholar]
  41. Taylor JA, Barrow GI, , 1981. A non-pathogenic vibrio for the routine quality control of TCBS cholera medium. J Clin Pathol 34: 208212.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0601
Loading
/content/journals/10.4269/ajtmh.13-0601
Loading

Data & Media loading...

Supplementary PDF

  • Received : 17 Oct 2013
  • Accepted : 10 Sep 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error