1921
Volume 91, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The intracellular endosymbiont has been artificially transinfected into the dengue vector , where it is being investigated as a potential dengue biological control agent. Invasion of in natural populations depends upon the fitness of -infected relative to uninfected competitors. Although infections impose fitness costs on the adult host, effects at the immature stages are less clear, particularly in competitive situations. We look for effects of two infections, Mel and MelPop, on intra-strain and inter-strain larval competition in . Development of -infected larvae is delayed in mixed cohorts with uninfected larvae under crowded-rearing conditions. Slow developing MelPop-infected larvae have reduced adult size compared with uninfected larvae, and larvae with the Mel infection are somewhat larger and have greater viability relative to uninfected larvae when in mixed cohorts. Implications for successful invasion by these infections under field conditions are considered.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.13-0576
2014-07-02
2019-05-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/1/198.html?itemId=/content/journals/10.4269/ajtmh.13-0576&mimeType=html&fmt=ahah

References

  1. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH, , 2008. How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol Lett 281: 215220.[Crossref] [Google Scholar]
  2. Zug R, Hammerstein P, , 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7: e38544.[Crossref] [Google Scholar]
  3. Hoffmann AA, Turelli M, Harshman LG, , 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans . Genetics 126: 933948. [Google Scholar]
  4. Werren JH, Baldo L, Clark ME, , 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741751.[Crossref] [Google Scholar]
  5. Yen JH, Barr AR, , 1973. The etiological agent of cytoplasmic incompatibility in Culex pipens . J Invertebr Pathol 22: 242250.[Crossref] [Google Scholar]
  6. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR, , 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans . PLoS Pathog 9: e1003607.[Crossref] [Google Scholar]
  7. Riegler M, Sidhu M, Miller WJ, O'Neill SL, , 2005. Evidence for a global Wolbachia replacement in Drosophila melanogaster . Curr Biol 15: 14281433.[Crossref] [Google Scholar]
  8. Turelli M, Hoffmann AA, , 1991. Rapid spread of inherited incompatibility factor in California Drosophila . Nature 353: 440442.[Crossref] [Google Scholar]
  9. Kittayapong P, Baisley KJ, Baimai V, O'Neill SL, , 2000. Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37: 340345.[Crossref] [Google Scholar]
  10. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL, , 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti . Science 323: 141144.[Crossref] [Google Scholar]
  11. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref] [Google Scholar]
  12. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, , 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium . Cell 139: 12681278.[Crossref] [Google Scholar]
  13. Hancock PA, Sinkins SP, Godfray HC, , 2011. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis 5: e1024.[Crossref] [Google Scholar]
  14. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref] [Google Scholar]
  15. Suh E, Mercer DR, Fu YQ, Dobson SL, , 2009. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster . Appl Environ Microbiol 75: 77837788.[Crossref] [Google Scholar]
  16. McMeniman CJ, O'Neill SL, , 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748.[Crossref] [Google Scholar]
  17. Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, , 2011. Dynamics of the “Popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.[Crossref] [Google Scholar]
  18. Turley AP, Moreira LA, O'Neill SL, McGraw EA, , 2009. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti . PLoS Negl Trop Dis 3: e516.[Crossref] [Google Scholar]
  19. Gavotte L, Mercer DR, Stoeckle JJ, Dobson SL, , 2010. Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. J Invertebr Pathol 105: 341346.[Crossref] [Google Scholar]
  20. Tun-Lin W, Burkot TR, Kay BH, , 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 3137.[Crossref] [Google Scholar]
  21. Wada Y, , 1965. Effect of larval density on the development of Aedes aegypti (L.) and the size of adults. Quaest Ent 1: 223249. [Google Scholar]
  22. Barbosa P, Peters TM, Greenough NC, , 1972. Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress. Environ Entomol 1: 8993.[Crossref] [Google Scholar]
  23. Maciá A, , 2009. Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae). Rev Soc Entomol Argent 68: 107114. [Google Scholar]
  24. Dye C, , 1984. Competition amongst larval Aedes aegypti: the role of interference. Ecol Entomol 9: 355357.[Crossref] [Google Scholar]
  25. Bedhomme S, Agnew P, Sidobre C, Michalakis Y, , 2005. Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae. Ecol Entomol 30: 17.[Crossref] [Google Scholar]
  26. Marina CF, Fernandez-Salas I, Ibarra JE, Arredondo-Jimenez JI, Valle J, Williams T, , 2005. Transmission dynamics of an iridescent virus in an experimental mosquito population: the role of host density. Ecol Entomol 30: 376382.[Crossref] [Google Scholar]
  27. Braks MA, Honorio NA, Lounibos LP, Lourenco-De-Oliveira R, Juliano SA, , 2004. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97: 130139.[Crossref] [Google Scholar]
  28. Juliano SA, , 1998. Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition? Ecology 79: 255268.[Crossref] [Google Scholar]
  29. Caspari E, Watson GS, , 1959. On the evolutionary importance of cytoplasmic sterility in mosquitos. Evolution 13: 568570.[Crossref] [Google Scholar]
  30. Turelli M, Hoffmann AA, , 1999. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol 8: 243255.[Crossref] [Google Scholar]
  31. Crain PR, Mains JW, Suh E, Huang YX, Crowley PH, Dobson SL, , 2011. Wolbachia infections that reduce immature insect survival: predicted impacts on population replacement. BMC Evol Biol 11: 290.[Crossref] [Google Scholar]
  32. Islam MS, Dobson SL, , 2006. Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development. J Med Entomol 43: 689695.[Crossref] [Google Scholar]
  33. Gavotte L, Mercer DR, Vandyke R, Mains JW, Dobson SL, , 2009. Wolbachia infection and resource competition effects on immature Aedes albopictus (Diptera: Culicidae). J Med Entomol 46: 451459.[Crossref] [Google Scholar]
  34. Nasci RS, , 1990. Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J Med Entomol 27: 716719.[Crossref] [Google Scholar]
  35. Russell RC, , 1986. Larval competition between the introduced vector of dengue fever in Australia, Aedes aegypti (L), and a native container breeding mosquito, Aedes notoscriptus (Skuse) (Diptera, Culicidae). Aust J Zool 34: 527534.[Crossref] [Google Scholar]
  36. Anderson LE, , 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 57: 242244.[Crossref] [Google Scholar]
  37. Huestis DL, Yaro AS, Traore AI, Adamou A, Kassogue Y, Diallo M, Timbine S, Dao A, Lehmann T, , 2011. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol 214: 23452353.[Crossref] [Google Scholar]
  38. Endersby NM, McKechnie SW, Vogel H, Gahan LJ, Baxter SW, Ridland PM, Weeks AR, , 2005. Microsatellites isolated from diamondback moth, Plutella xylostella (L.), for studies of dispersal in Australian populations. Mol Ecol Notes 5: 5153.[Crossref] [Google Scholar]
  39. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, , 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans . Appl Environ Microbiol 78: 47404743.[Crossref] [Google Scholar]
  40. Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA, , 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 89: 7892.[Crossref] [Google Scholar]
  41. Bedhomme S, Agnew P, Sidobre C, Michalakis Y, , 2003. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti . J Evol Biol 16: 721730.[Crossref] [Google Scholar]
  42. Hurst TP, Pittman G, O'Neill SL, Ryan PA, Nguyen HL, Kay BH, , 2012. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. J Med Entomol 49: 624630.[Crossref] [Google Scholar]
  43. Suh E, Dobson SL, , 2013. Reduced competitiveness of Wolbachia infected Aedes aegypti larvae in intra and inter specific immature interactions. J Invertebr Pathol 114: 173177.[Crossref] [Google Scholar]
  44. Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, McGraw EA, , 2009. Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia . PLoS Negl Trop Dis 3: e568.[Crossref] [Google Scholar]
  45. Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA, , 2009. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis . J Exp Biol 212: 14361441.[Crossref] [Google Scholar]
  46. Briegel H, , 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti . J Insect Physiol 36: 165172.[Crossref] [Google Scholar]
  47. Nasci RS, , 1986. The size of emerging and host seeking Aedes aegypti and the relation of size to blood feeding success in the field. J Am Mosquito Contr 2: 6162. [Google Scholar]
  48. Ponlawat A, Harrington LC, , 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti . Am J Trop Med Hyg 80: 395400. [Google Scholar]
  49. McGraw EA, O'Neill SL, , 2013. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11: 181193.[Crossref] [Google Scholar]
  50. Hoffmann AA, Turelli M, , 2013. Facilitating Wolbachia introductions into mosquito populations through insecticide-resistance selection. Proc Biol Sci 280: 20130371.[Crossref] [Google Scholar]
  51. Brownstein JS, Hett E, O'Neill SL, , 2003. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84: 2429.[Crossref] [Google Scholar]
  52. Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ, , 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7: 9.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0576
Loading
/content/journals/10.4269/ajtmh.13-0576
Loading

Data & Media loading...

  • Received : 03 Oct 2013
  • Accepted : 17 Mar 2014
  • Published online : 02 Jul 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error