Volume 91, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2013. Chagas Disease (American Trypanosomiasis). WHO Media Center. Fact Sheet No. 340. Geneva: World Health Organization. [Google Scholar]
  2. World Health Organization, 2004. World Health Report 2004: Changing History (World Health Organization, Geneva). Available at: www.who.int/whr/2004/en/report04_en.pdf. Accessed April 11, 2011. [Google Scholar]
  3. Schmunis GA, , 1999. Iniciativa del Cono Sur. Santo Domingo de Los Colorados, Ecuador. INDRE, Mexico City. Proceedings of the Second International Workshop on Population Biology and Control of Triatominae: 2631. [Google Scholar]
  4. Carcavallo RU, Jurberg J, Galindez Giron I, Lent H, , 1997. Atlas of Chagas' Disease Vector in the Americas. Rio de Janeiro: Editora Fiocruz. [Google Scholar]
  5. Lent H, Wygodzinsky P, , 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. Bull Am Mus Nat Hist 163: 123520. [Google Scholar]
  6. Ampleford EJ, Davey KG, , 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. Insect Physiol 35: 183187.[Crossref] [Google Scholar]
  7. Lazzari CR, , 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740741.[Crossref] [Google Scholar]
  8. Lazzari CR, , 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans . J Insect Physiol 38: 895903.[Crossref] [Google Scholar]
  9. McEwen PK, Lehane MJ, , 1993. Factors influencing flight initiation in the triatomine bug Triatoma infestans (Hemiptera: Reduviidae). Insect Sci Appl 14: 461464. [Google Scholar]
  10. Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, , 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311316.[Crossref] [Google Scholar]
  11. Roca MJ, Lazzari CR, , 1994. Effects of relative humidity on the haematophagous bug Triatoma infestans: hygropreference and eclosion success. J Insect Physiol 40: 901907.[Crossref] [Google Scholar]
  12. Lorenzo MG, Lazzari CR, , 1998. Activity pattern in relation to refuge exploitation and feeding in Triatoma infestans (Hemiptera: Reduviidae). Acta Trop 70: 163170.[Crossref] [Google Scholar]
  13. Guarneri AA, Lazzari CR, Diotaiuti L, Lorenzo MG, , 2002. The effect of relative humidity on the behaviour and development of Triatoma brasiliensis (Hemiptera, Reduviidae). Physiol Entomol 27: 142147.[Crossref] [Google Scholar]
  14. Minoli SA, Lazzari CR, , 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans . J Insect Physiol 49: 927932.[Crossref] [Google Scholar]
  15. Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, , 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 7992.[Crossref] [Google Scholar]
  16. Schofield CJ, , 1992. Dispersative flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.[Crossref] [Google Scholar]
  17. Schofield CJ, Matthews JN, , 1985. Theoretical approach to active dispersal and colonization of houses by Triatoma infestans . J Trop Med Hyg 88: 211222. [Google Scholar]
  18. Cecere MC, Gürtler RE, Canale DM, Chuit R, Cohen JE, , 2004. Effects of partial housing improvement and insecticide spraying on the reinfestation dynamics of Triatoma infestans in rural northwestern Argentina. Acta Trop 84: 101116.[Crossref] [Google Scholar]
  19. Vazquez-Prokopec GM, Ceballos LA, Kitron U, Gürtler GE, , 2004. Active dispersal of natural populations of Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 41: 614621.[Crossref] [Google Scholar]
  20. O'Brien SJ, MacIntyre RJ, , 1972. The alpha-glycerophosphate cycle in Drosophila melanogaster . Genet Aspects Genet 71: 127138. [Google Scholar]
  21. Collier GE, Sullivan DT, MacIntyre RJ, , 1976. Purification of α-glycerophosphate dehydrogenase from Drosophila melanogaster . Biochim Biophys Acta 429: 316.[Crossref] [Google Scholar]
  22. Bewley GC, Rawls JM, Lucchesi JC, , 1974. α-glycerolphosphatedehydrogenase in Drosophila melanogaster: kinetic differences and developmental differentiation of the larval and adult isozyme. J Insect Physiol 20: 153165.[Crossref] [Google Scholar]
  23. Rechsteiner MD, , 1970. Drosophila lactate dehydrogenase and α-glycerophosphate dehydrogenase: distribution and change in activity during development. J Insect Physiol 16: 11791192.[Crossref] [Google Scholar]
  24. Sacktor B, Dick A, , 1962. Pathways of hydrogen transport of extra-mitochondrial reduced dephosphopyridine nucleotide in flight muscles. J Biol Chem 237: 32593262. [Google Scholar]
  25. Scaraffia P, Remedi S, Maldonado C, Aoki A, Gerez de Burgos NM, , 1997. Comparative enzymatic and ultrastructural changes in thoracic muscles of Triatomine insects during the last stage of metamorphosis. Biochem Physiol 116: 173179.[Crossref] [Google Scholar]
  26. Stroppa MM, Carriazo C, Soria N, Pereira R, Gerez de Burgos NM, , 2008. Differential tissue and flight developmental expression of glycerol-3-phosphate dehydrogenase isozymes in the Chagas disease vector Triatoma infestans . Am J Trop Med Hyg 79: 2835. [Google Scholar]
  27. Stroppa MM, Lagunas MS, Carriazo CS, García BA, Iraola G, Panzera Y, Gerez de Burgos NM, , 2013. Differential expression of glycerol-3-phosphate dehydrogenase isoforms in flight muscles in the Chagas disease vector Triatoma infestans (Hemiptera, Reduviidae). Am J Trop Med Hyg 88: 11461151.[Crossref] [Google Scholar]
  28. Lazzari CR, Fischbein D, Insausti TC, , 2011. Differential control of light-dark adaptation in the ocelli and compound eyes of Triatoma infestans . J Insect Physiol 57: 15451552.[Crossref] [Google Scholar]
  29. Saunders DS, , 1982. Insect Clocks. Second edition. Oxford, United Kingdom: Pergamon Press. [Google Scholar]
  30. Fink SC, Brosemer RW, , 1973. Comparative studies on glycerol-3-phosphate dehydrogenase in bees and wasp. Arch Biochem Biophys 158: 1929.[Crossref] [Google Scholar]
  31. Rund SC, Gentile JE, Duffield GE, , 2013. Extensive circadian and light regulation of transcriptome in the malaria mosquito Anopheles gambiae . BCM Genomics 14: 218237.[Crossref] [Google Scholar]
  32. Minoli SA, Baraballe S, Lorenzo Figueiras AN, , 2007. Daily rhythm of aggregation in the haematophagous bug Triatoma infestans (Heteroptera: Reduviidae). Mem Inst Oswaldo Cruz 102: 449454.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 26 Sep 2013
  • Accepted : 02 May 2014
  • Published online : 06 Aug 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error