1921
Volume 91, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

, the main vector of Chagas disease, is a blood-sucking insect. Flight dispersal of adults is the most important mechanism for reinfestation of houses after insecticide spraying. Flight muscles have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. In this study, we explored the profile of GPDH expression in females and males adult flight muscles under light/dark cycle, constant light, and constant dark conditions. Under constant dark conditions, GPDH-1 flight muscles of showed a rhythmic pattern of transcription synchronous with a rhythmic profile of activity suggesting regulation by the endogenous circadian clock. Otherwise, the GPDH-2 expression analysis showed no regulation by the endogenous clock, but showed that an external factor, such as the dark/light period, was necessary for synchronization of GPDH-2 transcription and activity.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.13-0556
2014-08-06
2017-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/2/399.html?itemId=/content/journals/10.4269/ajtmh.13-0556&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2013. Chagas Disease (American Trypanosomiasis). WHO Media Center. Fact Sheet No. 340. Geneva: World Health Organization.
  2. World Health Organization, 2004. World Health Report 2004: Changing History (World Health Organization, Geneva). Available at: www.who.int/whr/2004/en/report04_en.pdf. Accessed April 11, 2011.
  3. Schmunis GA, , 1999. Iniciativa del Cono Sur. Santo Domingo de Los Colorados, Ecuador. INDRE, Mexico City. Proceedings of the Second International Workshop on Population Biology and Control of Triatominae: 2631.
  4. Carcavallo RU, Jurberg J, Galindez Giron I, Lent H, , 1997. Atlas of Chagas' Disease Vector in the Americas. Rio de Janeiro: Editora Fiocruz.
  5. Lent H, Wygodzinsky P, , 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas' disease. Bull Am Mus Nat Hist 163: 123520.
  6. Ampleford EJ, Davey KG, , 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. Insect Physiol 35: 183187.[Crossref]
  7. Lazzari CR, , 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740741.[Crossref]
  8. Lazzari CR, , 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans . J Insect Physiol 38: 895903.[Crossref]
  9. McEwen PK, Lehane MJ, , 1993. Factors influencing flight initiation in the triatomine bug Triatoma infestans (Hemiptera: Reduviidae). Insect Sci Appl 14: 461464.
  10. Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, , 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311316.[Crossref]
  11. Roca MJ, Lazzari CR, , 1994. Effects of relative humidity on the haematophagous bug Triatoma infestans: hygropreference and eclosion success. J Insect Physiol 40: 901907.[Crossref]
  12. Lorenzo MG, Lazzari CR, , 1998. Activity pattern in relation to refuge exploitation and feeding in Triatoma infestans (Hemiptera: Reduviidae). Acta Trop 70: 163170.[Crossref]
  13. Guarneri AA, Lazzari CR, Diotaiuti L, Lorenzo MG, , 2002. The effect of relative humidity on the behaviour and development of Triatoma brasiliensis (Hemiptera, Reduviidae). Physiol Entomol 27: 142147.[Crossref]
  14. Minoli SA, Lazzari CR, , 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans . J Insect Physiol 49: 927932.[Crossref]
  15. Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, , 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 7992.[Crossref]
  16. Schofield CJ, , 1992. Dispersative flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.[Crossref]
  17. Schofield CJ, Matthews JN, , 1985. Theoretical approach to active dispersal and colonization of houses by Triatoma infestans . J Trop Med Hyg 88: 211222.
  18. Cecere MC, Gürtler RE, Canale DM, Chuit R, Cohen JE, , 2004. Effects of partial housing improvement and insecticide spraying on the reinfestation dynamics of Triatoma infestans in rural northwestern Argentina. Acta Trop 84: 101116.[Crossref]
  19. Vazquez-Prokopec GM, Ceballos LA, Kitron U, Gürtler GE, , 2004. Active dispersal of natural populations of Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 41: 614621.[Crossref]
  20. O'Brien SJ, MacIntyre RJ, , 1972. The alpha-glycerophosphate cycle in Drosophila melanogaster . Genet Aspects Genet 71: 127138.
  21. Collier GE, Sullivan DT, MacIntyre RJ, , 1976. Purification of α-glycerophosphate dehydrogenase from Drosophila melanogaster . Biochim Biophys Acta 429: 316.[Crossref]
  22. Bewley GC, Rawls JM, Lucchesi JC, , 1974. α-glycerolphosphatedehydrogenase in Drosophila melanogaster: kinetic differences and developmental differentiation of the larval and adult isozyme. J Insect Physiol 20: 153165.[Crossref]
  23. Rechsteiner MD, , 1970. Drosophila lactate dehydrogenase and α-glycerophosphate dehydrogenase: distribution and change in activity during development. J Insect Physiol 16: 11791192.[Crossref]
  24. Sacktor B, Dick A, , 1962. Pathways of hydrogen transport of extra-mitochondrial reduced dephosphopyridine nucleotide in flight muscles. J Biol Chem 237: 32593262.
  25. Scaraffia P, Remedi S, Maldonado C, Aoki A, Gerez de Burgos NM, , 1997. Comparative enzymatic and ultrastructural changes in thoracic muscles of Triatomine insects during the last stage of metamorphosis. Biochem Physiol 116: 173179.[Crossref]
  26. Stroppa MM, Carriazo C, Soria N, Pereira R, Gerez de Burgos NM, , 2008. Differential tissue and flight developmental expression of glycerol-3-phosphate dehydrogenase isozymes in the Chagas disease vector Triatoma infestans . Am J Trop Med Hyg 79: 2835.
  27. Stroppa MM, Lagunas MS, Carriazo CS, García BA, Iraola G, Panzera Y, Gerez de Burgos NM, , 2013. Differential expression of glycerol-3-phosphate dehydrogenase isoforms in flight muscles in the Chagas disease vector Triatoma infestans (Hemiptera, Reduviidae). Am J Trop Med Hyg 88: 11461151.[Crossref]
  28. Lazzari CR, Fischbein D, Insausti TC, , 2011. Differential control of light-dark adaptation in the ocelli and compound eyes of Triatoma infestans . J Insect Physiol 57: 15451552.[Crossref]
  29. Saunders DS, , 1982. Insect Clocks. Second edition. Oxford, United Kingdom: Pergamon Press.
  30. Fink SC, Brosemer RW, , 1973. Comparative studies on glycerol-3-phosphate dehydrogenase in bees and wasp. Arch Biochem Biophys 158: 1929.[Crossref]
  31. Rund SC, Gentile JE, Duffield GE, , 2013. Extensive circadian and light regulation of transcriptome in the malaria mosquito Anopheles gambiae . BCM Genomics 14: 218237.[Crossref]
  32. Minoli SA, Baraballe S, Lorenzo Figueiras AN, , 2007. Daily rhythm of aggregation in the haematophagous bug Triatoma infestans (Heteroptera: Reduviidae). Mem Inst Oswaldo Cruz 102: 449454.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0556
Loading
/content/journals/10.4269/ajtmh.13-0556
Loading

Data & Media loading...

  • Received : 26 Sep 2013
  • Accepted : 02 May 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error