Volume 91, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



, , and genetic polymorphisms and treatment response after a three-day course of artesunate-mefloquine was investigated in 71 Burmese patients with uncomplicated malaria. Results provide evidence for the possible link between and polymorphisms and plasma concentrations of artesunate/dihydroartemisinin and treatment response. In one patient who had the genotype (decreased enzyme activity), plasma concentration of artesunate at one hour appeared to be higher, and the concentration of dihydroartemisinin was lower than for those carrying other genotypes (415 versus 320 ng/mL). The proportion of patients with adequate clinical and parasitologic response who had the genotype (mutant genotype) was significantly lower compared with those with late parasitologic failure (14.0% versus 19.0%). Confirmation through a larger study in various malaria-endemic areas is required before a definite conclusion on the role of genetic polymorphisms of these drug-metabolizing enzymes on treatment response after artesunate-based combination therapy can be made.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Na-Bangchang K, Karbwang J, , 2013. Emerging artemisinin resistance in the border areas of Thailand. Expert Rev Clin Pharmacol 6: 307322.[Crossref] [Google Scholar]
  2. Na-Bangchang K, Ruengweerayut R, Wernsdorfer WH, , 2011. Distribution of mefloquine in the blood of Thai patients with acute uncomplicated falciparum malaria following administration of therapeutic doses of artesunate. Eur J Clin Pharmacol 67: 687691.[Crossref] [Google Scholar]
  3. Noedl H, Se Y, Schaecher K, Smith BL, Socheat D, Fukuda MM, , 2008. Evidence of artemisinin-resistant malaria in western Cambodia. N Engl J Med 359: 26192620.[Crossref] [Google Scholar]
  4. Noedl H, Socheat D, Satimai W, , 2009. Artemisinin-resistant malaria in Asia. N Engl J Med 361: 540541.[Crossref] [Google Scholar]
  5. Vijaykadga S, Rojanawatsirivej C, Cholpol S, Phoungmanee D, Nakavej A, Wongsrichanalai C, , 2006. In vivo sensitivity monitoring of mefloquine monotherapy and artesunate-mefloquine combinations for the treatment of uncomplicated falciparum malaria in Thailand in 2003. Trop Med Int Health 11: 211219.[Crossref] [Google Scholar]
  6. Na-Bangchang K, Muhamad P, Ruaengweerayut R, Chaijaroenkul W, Karbwang J, , 2013. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity. Malar J 12: 263.[Crossref] [Google Scholar]
  7. Edstein MD, Looareesuwan S, Viravan C, Kyle DE, , 1996. Pharmacokinetics of proguanil in malaria patients treated with proguanil plus atovaquone. Southeast Asian J Trop Med Public Health 27: 216220. [Google Scholar]
  8. Kerb R, Fux R, Mörike K, Kremsner PG, Gil JP, Gleiter CH, Schwab M, , 2009. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 9: 760774.[Crossref] [Google Scholar]
  9. Na-Bangchang K, Krudsood S, Silachamroon U, Molunto P, Tasanor O, Chalermrat K, Tangpukdee N, Matangkasombut O, Kano S, Looareesuwan S, , 2004. The pharmacokinetics of oral dihydroartemisinin and artesunate in healthy Thai volunteers. Southeast Asian J Trop Med Public Health 35: 575582. [Google Scholar]
  10. Wongsrichanalai C, Wimonwattrawatee T, Sookto P, Laoboonchai A, Heppner DG, Kyle DE, Wernsdorfer WH, , 1997. In vitro sensitivity of Plasmodium falciparum to artesunate in Thailand. Bull World Health Organ 77: 392398. [Google Scholar]
  11. World Health Organization, 2003. Assessment and Monitoring of Antimalarial Drug Efficacy for Treatment of Uncomplicated Falciparum Malaria. (WHO/HTM/RBM/2003.50). Geneva: World Health Organization. [Google Scholar]
  12. Ariey F, Chalvet W, Hommel D, Peneau C, Hulin A, Mercereau-Puijalon O, Duchemin JB, Sarthou JL, Reynes JM, Fandeur T, , 1999. Plasmodium falciparum parasites in French Guiana: limited genetic diversity and high selfing rate. Am J Trop Med Hyg 61: 978985. [Google Scholar]
  13. Wooden J, Gould E, Paull A, Sibley C, , 1992. Plasmodium falciparum: a simple polymerase chain reaction method for differentiating strains. Exp Parasitol 75: 207212.[Crossref] [Google Scholar]
  14. Wooden J, Kyes S, Sibley C, , 1993. PCR and strain identification in Plasmodium falciparum . Parasitol Today 9: 303305.[Crossref] [Google Scholar]
  15. Thuy LD, Hung le N, Danh PT, Na-Bangchang K, , 2008. Development and validation of a liquid chromatography-mass spectrometry method for the simultaneous quantification of artesunate and dihydroartemisinin in human plasma. Southeast Asian J Trop Med Public Health 39: 963977. [Google Scholar]
  16. Sambrook J, Fritsch EF, Maniatis T, , 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Press. [Google Scholar]
  17. Ariyoshi N, Sawamura Y, Kamataki T, , 2001. A novel single nucleotide polymorphism altering stability and activity of CYP2a6. Biochem Biophys Res Commun 281: 810814.[Crossref] [Google Scholar]
  18. Neslihan AK, Ben K, Ismet C, , 2005. Do CYP2A6 and GSTM1 genotypes have any impact on genotoxicity in healthy Turkish smokers. FABAD J Pharm Sci 30: 1725. [Google Scholar]
  19. Yoshida R, Nakajima M, Watanabe Y, Kwon JT, Yokoi T, , 2002. Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Br J Clin Pharmacol 54: 511517.[Crossref] [Google Scholar]
  20. Lang T, Klein K, Fischer J, Nussler AK, Neuhaus P, Hofmann U, Eichelbaum M, Schwab M, Zanger UM, , 2001. Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11: 399415.[Crossref] [Google Scholar]
  21. Yamanaka H, Nakajima M, Hara Y, Katoh M, Tachibana O, Yamashita J, Yokoi T, , 2005. Urinary excretion of phenytoin metabolites, 5-(4′-hydroxyphenyl)-5-phenylhydantoin and its O-glucuronide in humans and analysis of genetic polymorphisms of UDP-glucuronosyltransferases. Drug Metab Pharmacokinet 20: 135143.[Crossref] [Google Scholar]
  22. Fletcher KA, Evans DA, Gilles HM, Greaves J, Bunnag D, Harinasuta T, , 1981. Studies on the pharmacokinetics of primaquine. Bull World Health Organ 59: 407412. [Google Scholar]
  23. Mahavorasirikul W, Tassaneeyakul W, Satarug S, Reungweerayut R, Na-Bangchang C, Na-Bangchang K, , 2009. CYP2A6 genotypes and coumarin-oxidation phenotypes in a Thai population and their relationship to tobacco smoking. Eur J Clin Pharmacol 65: 377384.[Crossref] [Google Scholar]
  24. Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, Mizugaki M, , 2002. Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 53: 596603.[Crossref] [Google Scholar]
  25. Wang J, Pitarque M, Ingelman-Sundberg M, , 2006. 3′-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression. Biochem Biophys Res Commun 340: 491497.[Crossref] [Google Scholar]
  26. Kwon JT, Nakajima M, Chai S, Yom YK, Kim HK, Yamazaki H, Sohn DR, Yamamoto T, Kuroiwa Y, Yokoi T, , 2001. Nicotine metabolism and CYP2A6 allele frequencies in Koreans. Pharmacogenetics 11: 317323.[Crossref] [Google Scholar]
  27. Nakajima M, Kwon JT, Tanaka N, Zenta T, Yamamoto Y, Yamamoto H, Yamazaki H, Yamamoto T, Kuroiwa Y, Yokoi T, , 2001. Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans. Clin Pharmacol Ther 69: 7278.[Crossref] [Google Scholar]
  28. Mwenifumbo JC, Lessov-Schlaggar CN, Zhou Q, Krasnow RE, Swan GE, Benowitz NL, Tyndale RF, , 2008. Identification of novel CYP2A6*1B variants: the CYP2A6*1B allele is associated with faster in vivo nicotine metabolism. Clin Pharmacol Ther 83: 115121.[Crossref] [Google Scholar]
  29. Ariyoshi N, Takahashi Y, Miyamoto M, Umetsu Y, Daigo S, Tateishi T, Kobayashi S, Mizorogi Y, Loriot MA, Stucker I, Beaune P, Kinoshita M, Kamataki T, , 2000. Structural characterization of a new variant of the CYP2A6 gene (CYP2A6*1B) apparently diagnosed as heterozygotes of CYP2A6*1A and CYP2A6*4C. Pharmacogenetics 10: 687693.[Crossref] [Google Scholar]
  30. Oscarson M, McLellan RA, Gullsten H, Yue QY, Lang MA, Bernal ML, Sinues B, Hirvonen A, Raunio H, Pelkonen O, Ingelman-Sundberg M, , 1999. Characterisation and PCR-based detection of a CYP2A6 gene deletion found at a high frequency in a Chinese population. FEBS Lett 448: 105110.[Crossref] [Google Scholar]
  31. Benowitz NL, Swan GE, Jacob P, 3rd Lessov-Schlaggar CN, Tyndale RF, , 2006. CYP2A6 genotype and the metabolism and disposition kinetics of nicotine. Clin Pharmacol Ther 80: 457467.[Crossref] [Google Scholar]
  32. Burk O, Arnold KA, Nussler AK, Schaeffeler E, Efimova E, Avery BA, Avery MA, Fromm MF, Eichelbaum M, , 2005. Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor. Mol Pharmacol 67: 19541965.[Crossref] [Google Scholar]
  33. Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H, , 2008. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 82: 667715.[Crossref] [Google Scholar]
  34. Simonsson US, Jansson B, Hai TN, Huong DX, Tybring G, Ashton M, , 2003. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 74: 3243.[Crossref] [Google Scholar]
  35. Simonsson US, Lindell M, Raffalli-Mathieu F, Lannerbro A, Honkakoski P, Lang MA, , 2006. In vivo and mechanistic evidence of nuclear receptor CAR induction by artemisinin. Eur J Clin Invest 36: 647653.[Crossref] [Google Scholar]
  36. Ma B, Polsky-Fisher SL, Vickers S, Cui D, Rodrigues AD, , 2007. Cytochrome P450 3A-dependent metabolism of a potent and selective gamma-aminobutyric acid alpha2/3 receptor agonist in vitro: involvement of cytochrome P450 3A5 displaying biphasic kinetics. Drug Metab Dispos 35: 13011307.[Crossref] [Google Scholar]
  37. Lamba V, Lamba J, Yasuda K, Strom S, Davila J, Hancock ML, Fackenthal JD, Rogan PK, Ring B, Wrighton SA, Schuetz EG, , 2003. Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive androstane receptor) expression. J Pharmacol Exp Ther 307: 906922.[Crossref] [Google Scholar]
  38. Rodriguez-Novoa S, Barreiro P, Rendon A, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V, , 2005. Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis 40: 13581361.[Crossref] [Google Scholar]
  39. Puthanakit T, Tanpaiboon P, Aurpibul L, Cressey TR, Sirisanthana V, , 2009. Plasma efavirenz concentrations and the association with CYP2B6-516G >T polymorphism in HIV-infected Thai children. Antivir Ther 14: 315320. [Google Scholar]
  40. Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Menard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Menard D, , 2014. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505: 5055.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 16 Sep 2013
  • Accepted : 06 May 2014
  • Published online : 06 Aug 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error