1921
Volume 91, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In 2009, a severe epidemic of dengue disease occurred in Sri Lanka, with higher mortality and morbidity than any previously recorded epidemic in the country. It corresponded to a shift to dengue virus 1 as the major disease-causing serotype in Sri Lanka. Dengue disease reached epidemic levels in the next 3 years. We report phylogenetic evidence that the 2009 epidemic DENV-1 strain continued to circulate within the population and caused severe disease in the epidemic of 2012. Bayesian phylogeographic analyses suggest that the 2009 Sri Lankan epidemic DENV-1 strain may have traveled directly or indirectly from Thailand through China to Sri Lanka, and after spreading within the Sri Lankan population, it traveled to Pakistan and Singapore. Our findings delineate the dissemination route of a virulent DENV-1 strain in Asia. Understanding such routes will be of particular importance to global control efforts.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.13-0523
2014-08-06
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/2/225.html?itemId=/content/journals/10.4269/ajtmh.13-0523&mimeType=html&fmt=ahah

References

  1. Nathan MB, Dayal-Drager R, Guzman M, , 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention, and Control: New Edition. Geneva: World Health Organization. [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  3. Guzman MG, Kouri G, , 2002. Dengue: an update. Lancet Infect Dis 2: 3342.[Crossref] [Google Scholar]
  4. Halstead SB, , 1970. Observations related to pathogenesis of dengue hemorrhagic fever. I. Experience with classification of dengue viruses. Yale J Biol Med 42: 261275. [Google Scholar]
  5. Rothman AL, , 2011. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol 11: 532543.[Crossref] [Google Scholar]
  6. Whitehorn J, Simmons CP, , 2011. The pathogenesis of dengue. Vaccine 29: 72217228.[Crossref] [Google Scholar]
  7. Gubler DJ, , 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33: 330342.[Crossref] [Google Scholar]
  8. Wilder-Smith A, Gubler DJ, , 2008. Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92: 13771390.[Crossref] [Google Scholar]
  9. Kanakaratne N, , 2009. Severe dengue epidemics in Sri Lanka, 2003–2006. Emerg Infect Dis 15: 192199.[Crossref] [Google Scholar]
  10. Messer WB, Gubler DJ, Harris E, Sivananthan K, de Silva AM, , 2003. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg Infect Dis 9: 800809.[Crossref] [Google Scholar]
  11. Tissera HA, , 2011. New dengue virus type 1 genotype in Colombo, Sri Lanka. Emerg Infect Dis 17: 20532055.[Crossref] [Google Scholar]
  12. Dissanayake VH, Gunawardena ND, Gunasekara NC, Siriwardhana DR, Senarath N, , 2011. Shift in the transmission pattern of dengue serotypes and concurrent infection with more than one dengue virus serotype. Ceylon Med J 56: 176178. [Google Scholar]
  13. Sri Lankan Ministry of Health, EU, 2013. Disease Surveillance, Trends. Available at: http://www.epid.gov.lk/web/index.php?option=com_casesanddeaths&Itemid=448&lang=en. Accessed June 10, 2013. [Google Scholar]
  14. Sirisena PD, Noordeen F, , 2014. Evolution of dengue in Sri Lanka-changes in the virus, vector, and climate. International journal of infectious diseases: IJID: Official Publication of the International Society for Infectious Diseases 19: 612.[Crossref] [Google Scholar]
  15. Sudiro TM, , 1997. Rapid diagnosis of dengue viremia by reverse transcriptase-polymerase chain reaction using 3′-noncoding region universal primers. Am J Trop Med Hyg 56: 424429. [Google Scholar]
  16. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV, , 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30: 545551. [Google Scholar]
  17. Morgulis A, , 2008. Database indexing for production MegaBLAST searches. Bioinformatics 24: 17571764.[Crossref] [Google Scholar]
  18. Zhang Z, Schwartz S, Wagner L, Miller W, , 2000. A greedy algorithm for aligning DNA sequences. J Comput Biol 7: 203214.[Crossref] [Google Scholar]
  19. Needleman SB, Wunsch CD, , 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48: 443453.[Crossref] [Google Scholar]
  20. Drummond AJ, Suchard MA, Xie D, Rambaut A, , 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 19691973.[Crossref] [Google Scholar]
  21. Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W, , 2002. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161: 13071320. [Google Scholar]
  22. Dunham EJ, Holmes EC, , 2007. Inferring the timescale of dengue virus evolution under realistic models of DNA substitution. J Mol Evol 64: 656661.[Crossref] [Google Scholar]
  23. Rabaa MA, Ty Hang VT, Wills B, Farrar J, Simmons CP, Holmes EC, , 2010. Phylogeography of recently emerged DENV-2 in southern Viet Nam. PLoS Negl Trop Dis 4: e766.[Crossref] [Google Scholar]
  24. Rambaut A, Drummond AJ, , 2007. Tracer v1.5. Available at: http://tree.bio.ed.ac.uk/software/tracer/.
  25. Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS, , 2008. Automatic online tuning for fast Gaussian summation. Adv Neural Inf Process, 21 edn. 11131120. [Google Scholar]
  26. Pond SL, Frost SD, Muse SV, , 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics 21: 676679.[Crossref] [Google Scholar]
  27. Delport W, Poon AF, Frost SD, Kosakovsky Pond SL, , 2010. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26: 24552457.[Crossref] [Google Scholar]
  28. Kosakovsky Pond SL, Frost SD, , 2005. Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22: 12081222.[Crossref] [Google Scholar]
  29. Pond SL, , 2006. Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLOS Comput Biol 2: e62.[Crossref] [Google Scholar]
  30. Murrell B, , 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet 8: e1002764.[Crossref] [Google Scholar]
  31. R Development Core Team, 2013. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. [Google Scholar]
  32. Anoop M, , 2012. Complete genome sequencing and evolutionary analysis of dengue virus serotype 1 isolates from an outbreak in Kerala, South India. Virus Genes 45: 113.[Crossref] [Google Scholar]
  33. Chen S, , 2011. The origin of dengue viruses caused the DF outbreak in Guangdong province, China, in 2006. Infect Genet Evol 11: 11831187.[Crossref] [Google Scholar]
  34. Zhang C, , 2005. Clade replacements in dengue virus serotypes 1 and 3 are associated with changing serotype prevalence. J Virol 79: 1512315130.[Crossref] [Google Scholar]
  35. Khan MA, , 2013. Emergence and diversification of dengue 2 cosmopolitan genotype in Pakistan, 2011. PLoS ONE 8: e56391.[Crossref] [Google Scholar]
  36. Anez G, Morales-Betoulle ME, Rios M, , 2011. Circulation of different lineages of dengue virus type 2 in Central America, their evolutionary time-scale and selection pressure analysis. PLoS ONE 6: e27459.[Crossref] [Google Scholar]
  37. Holmes EC, , 2003. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77: 1129611298.[Crossref] [Google Scholar]
  38. Anez G, , 2013. Evolutionary dynamics of West Nile virus in the United States, 1999–2011: phylogeny, selection pressure and evolutionary time-scale analysis. PLoS Negl Trop Dis 7: e2245.[Crossref] [Google Scholar]
  39. Schreiber MJ, , 2009. Genomic epidemiology of a dengue virus epidemic in urban Singapore. J Virol 83: 41634173.[Crossref] [Google Scholar]
  40. Twiddy SS, Holmes EC, Rambaut A, , 2003. Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 20: 122129.[Crossref] [Google Scholar]
  41. Valle RP, Falgout B, , 1998. Mutagenesis of the NS3 protease of dengue virus type 2. J Virol 72: 624632. [Google Scholar]
  42. Murthy HM, Clum S, Padmanabhan R, , 1999. Dengue virus NS3 serine protease. Crystal structure and insights into interaction of the active site with substrates by molecular modeling and structural analysis of mutational effects. J Biol Chem 274: 55735580.[Crossref] [Google Scholar]
  43. Muller DA, Corrie SR, Coffey J, Young PR, Kendall MA, , 2012. Surface modified microprojection arrays for the selective extraction of the dengue virus NS1 protein as a marker for disease. Anal Chem 84: 32623268.[Crossref] [Google Scholar]
  44. Miller S, Sparacio S, Bartenschlager R, , 2006. Subcellular localization and membrane topology of the Dengue virus type 2 Non-structural protein 4B. J Biol Chem 281: 88548863.[Crossref] [Google Scholar]
  45. Modis Y, Ogata S, Clements D, Harrison SC, , 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427: 313319.[Crossref] [Google Scholar]
  46. Guzman MG, , 1995. Partial nucleotide and amino acid sequences of the envelope and the envelope/nonstructural protein-1 gene junction of four dengue-2 virus strains isolated during the 1981 Cuban epidemic. Am J Trop Med Hyg 52: 241246. [Google Scholar]
  47. Rico-Hesse R, , 1997. Origins of dengue type 2 viruses associated with increased pathogenicity in the Americas. Virology 230: 244251.[Crossref] [Google Scholar]
  48. Leitmeyer KC, , 1999. Dengue virus structural differences that correlate with pathogenesis. J Virol 73: 47384747. [Google Scholar]
  49. Cologna R, Rico-Hesse R, , 2003. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 77: 39293938.[Crossref] [Google Scholar]
  50. Imrie A, , 2010. Homology of complete genome sequences for dengue virus type-1, from dengue-fever- and dengue-haemorrhagic-fever-associated epidemics in Hawaii and French Polynesia. Ann Trop Med Parasitol 104: 225235.[Crossref] [Google Scholar]
  51. Samath F, . Chinese, Sri Lankan workers mingle at sprawling Hambantota port site. Financial Times. Oct. 5, 2008 [online]. Available at: http://www.sundaytimes.lk/081005/FinancialTimes/ft343.html. Accessed April 16, 2014. [Google Scholar]
  52. Mudalige D, . Lanka takes over Norochcholai plant. Features, Online edition of Daily News, Lakehouse Newspapers. Aug. 10, 2011 [online]. Available at: http://archives.dailynews.lk/2011/08/10/fea10.asp. Accessed April 16, 2014. [Google Scholar]
  53. Zheng K, , 2009. Molecular characterization of the E gene of dengue virus type 1 isolated in Guangdong province, China, in 2006. Epidemiol Infect 137: 7378.[Crossref] [Google Scholar]
  54. Nicolaisen LE, Desai MM, , 2012. Distortions in genealogies due to purifying selection. Mol Biol Evol 29: 35893600.[Crossref] [Google Scholar]
  55. Jenkins GM, Rambaut A, Pybus OG, Holmes EC, , 2002. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54: 156165.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0523
Loading
/content/journals/10.4269/ajtmh.13-0523
Loading

Data & Media loading...

Supplementary PDF

[Supplementary File, Supplementary KML]

[Supplementary File, Supplementary KML]

  • Received : 10 Sep 2013
  • Accepted : 24 Mar 2014
  • Published online : 06 Aug 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error