1921
Volume 91, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Mass administration of azithromycin for trachoma has been shown to reduce malarial parasitemia. However, the optimal seasonal timing of such distributions for antimalarial benefit has not been established. We performed numerical analyses on a seasonally forced epidemic model (of Ross-Macdonald type) with periodic impulsive annual mass treatment to address this question. We conclude that when azithromycin-based trachoma elimination programs occur in regions of seasonal malaria transmission, such as Niger, the optimal seasonal timing of mass drug administration (MDA) may not occur during the season of maximum transmission.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.13-0474
2014-11-05
2017-09-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/5/936.html?itemId=/content/journals/10.4269/ajtmh.13-0474&mimeType=html&fmt=ahah

References

  1. WHO, 2012. World Malaria Report 2012. Geneva: World Health Organization.
  2. WHO, 2012. WHO policy recommendation: seasonal malaria chemoprevention (SMC) for Plasmodium falciparum malaria control in highly seasonal transmission areas of the Sahel sub-region in Africa.
  3. Taylor WR, Richie TL, Fryauff DJ, Picarima H, Ohrt C, Tang D, Braitman D, Murphy GS, Widjaja H, Tjitra E, Ganjar A, Jones TR, Basri H, Berman J, , 1999. Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clin Infect Dis 28: 7481.[Crossref]
  4. van Eijk AM, Terlouw DJ, , 2011. Azithromycin for treating uncomplicated malaria. Cochrane Database Syst Rev (2): CD006688.
  5. Melese M, Chidambaram JD, Alemayehu W, Lee DC, Yi EH, Cevallos V, Zhou Z, Donnellan C, Saidel M, Whitcher JP, Gaynor BD, Lietman TM, , 2004. Feasibility of eliminating ocular Chlamydia trachomatis with repeat mass antibiotic treatments. JAMA 292: 721725.[Crossref]
  6. Schachter J, West SK, Mabey D, Dawson CR, Bobo L, Bailey R, Vitale S, Quinn TC, Sheta A, Sallam S, Mkocha H, Mabey D, Faal H, , 1999. Azithromycin in control of trachoma. Lancet 354: 630635.[Crossref]
  7. Aguas R, Lourenco JM, Gomes MG, White LJ, , 2009. The impact of IPTi and IPTc interventions on malaria clinical burden - in silico perspectives. PLoS ONE 4: e6627.[Crossref]
  8. Ross SR, , 1910. The Prevention of Malaria. New York: E. P. Dutton & Co.
  9. Macdonald G, , 1952. The analysis of equilibrium in malaria. Trop Dis Bull 49: 813829.
  10. Smith DL, Dushoff J, McKenzie FE, , 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2: e368.[Crossref]
  11. Wyse AP, Bevilacqua L, Rafikou M, , 2007. Simulating malaria model for different treatment intensities in a variable environment. Ecol Modell 206: 322330.[Crossref]
  12. Gao D, Lou Y, Ruan S, , 2014. A periodic Ross-Macdonald model in a patchy environment. Discrete and Continuous Dynamical Systems-Series B 19: 31333145.[Crossref]
  13. Mayor A, Aponte JJ, Fogg C, Saute F, Greenwood B, Dgedge M, Menendez C, Alonso PL, , 2007. The epidemiology of malaria in adults in a rural area of southern Mozambique. Malar J 6: 3.[Crossref]
  14. Anderson RM, May RM, , 1991. Infectious Diseases of Humans: Dynamics and Control. New York: Oxford University Press.
  15. Ross A, Killeen G, Smith T, , 2006. Relationships between host infectivity to mosquitoes and asexual parasite density in Plasmodium falciparum . Am J Trop Med Hyg 75: 3237.
  16. Smith DL, McKenzie FE, , 2004. Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar J 3: 13.[Crossref]
  17. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE, , 2012. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog 8: e1002588.[Crossref]
  18. Ruan S, Xiao D, Beier JC, , 2008. On the delayed Ross-Macdonald model for malaria transmission. Bull Math Biol 70: 10981114.[Crossref]
  19. Grassly NC, Fraser C, , 2006. Seasonal infectious disease epidemiology. Proc Biol Sci 273: 25412550.[Crossref]
  20. Bomblies A, Duchemin JB, Eltahir EA, , 2008. Hydrology of malaria: model development and application to a Sahelian village. Water Resour Res 44: W12445.[Crossref]
  21. Dunne MW, Singh N, Shukla M, Valecha N, Bhattacharyya P, Dev V, Patel K, Mohapatra MK, Lakhani J, Benner R, , 2005. A multicenter study of azithromycin, alone and in combination with chloroquine, for the treatment of acute uncomplicated Plasmodium falciparum malaria in India. J Infect Dis 191: 15821588.[Crossref]
  22. Eckhoff PA, , 2011. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J 10: 303.[Crossref]
  23. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, , 2000. A simplified model for predicting malaria entomologic inoculation rates based on entomologic and parasitologic parameters relevant to control. Am J Trop Med Hyg 62: 535544.
  24. Edlund S, Davis M, Douglas JV, Kershenbaum A, Waraporn N, Lessler J, Kaufman JH, , 2012. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence. Malar J 11: 331.[Crossref]
  25. Chitnis N, Hyman JM, Cushing JM, , 2008. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70: 12721296.[Crossref]
  26. Ermert V, Fink AH, Jones AE, Morse AP, , 2011. Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 10: 35.[Crossref]
  27. Ermert V, Fink AH, Jones AE, Morse AP, , 2011. Development of a new version of the Liverpool Malaria Model. II. Calibration and validation for West Africa. Malar J 10: 62.[Crossref]
  28. INS-Niger, 2011. Le Niger en Chiffres 2011. Available at: http://www.stat-niger.org/statistique/file/Annuaires_Statistiques/Annuaire_ins_2011/Niger%20en%20chiffres%20nov%202011.pdf.
  29. Fisher NI, , 1993. Statistical Analysis of Circular Data. Cambridge, UK: Cambridge University Press.[Crossref]
  30. Johnson RA, Wehrly T, , 1977. Measures and models for angular-correlation and angular-linear correlation. J R Stat Soc, B 39: 222229.
  31. Stare D, Harding-Esch E, Munoz B, Bailey R, Mabey D, Holland M, Gaydos C, West S, , 2011. Design and baseline data of a randomized trial to evaluate coverage and frequency of mass treatment with azithromycin: the Partnership for Rapid Elimination of Trachoma (PRET) in Tanzania and The Gambia. Ophthalmic Epidemiol 18: 2029.[Crossref]
  32. Amza A, Kadri B, Nassirou B, Stoller NE, Yu SN, Zhou Z, Chin S, West SK, Bailey RL, Mabey DC, Keenan JD, Porco TC, Lietman TM, Gaynor BD, Partnership P, , 2012. Community risk factors for ocular Chlamydia infection in Niger: pre-treatment results from a cluster-randomized trachoma trial. PLoS Negl Trop Dis 6: e1586.[Crossref]
  33. Gaynor BD, Amza A, Kadri B, Nassirou B, Lawan O, Maman L, Stoller NE, Yu SN, Zhou Z, Chin S, West SK, Bailey RL, Rosenthal PJ, Keenan JD, Porco TC, Lietman TM, , 2014. Impact of mass azithromycin distribution on malarial parasitemia during the low-transmission season in Niger: a cluster-randomized trial. Am J Trop Med Hyg. 90: 846851.[Crossref]
  34. Gao D, Ruan S, , 2012. A multi-patch malaria model with logistic growth populations. SIAM J Appl Math 72: 819841.[Crossref]
  35. Cisse B, Sokhna C, Boulanger D, Milet J, Ba el H, Richardson K, Hallett R, Sutherland C, Simondon K, Simondon F, Alexander N, Gaye O, Targett G, Lines J, Greenwood B, Trape JF, , 2006. Seasonal intermittent preventive treatment with artesunate and sulfadoxine-pyrimethamine for prevention of malaria in Senegalese children: a randomized, placebo-controlled, double-blind trial. Lancet 367: 659667.[Crossref]
  36. Konate AT, Yaro JB, Ouedraogo AZ, Diarra A, Gansane A, Soulama I, Kangoye DT, Kabore Y, Ouedraogo E, Ouedraogo A, Tiono AB, Ouedraogo IN, Chandramohan D, Cousens S, Milligan PJ, Sirima SB, Greenwood B, Diallo DA, , 2011. Intermittent preventive treatment of malaria provides substantial protection against malaria in children already protected by an insecticide-treated bed net in Burkina Faso: a randomized, double-blind, placebo-controlled trial. PLoS Med 8: e1000408.[Crossref]
  37. Near KA, Stowers AW, Jankovic D, Kaslow DC, , 2002. Improved immunogenicity and efficacy of the recombinant 19-kilodalton merozoite surface protein 1 by the addition of oligodeoxynucleotide and aluminum hydroxide gel in a murine malaria vaccine model. Infect Immun 70: 692701.[Crossref]
  38. Daubenberger CA, Salomon M, Vecino W, Hubner B, Troll H, Rodriques R, Patarroyo ME, Pluschke G, , 2001. Functional and structural similarity of V gamma 9V delta 2 T cells in humans and Aotus monkeys, a primate infection model for Plasmodium falciparum malaria. J Immunol 167: 64216430.[Crossref]
  39. Wilson AL, Taskforce IP, , 2011. A systematic review and meta-analysis of the efficacy and safety of intermittent preventive treatment of malaria in children (IPTc). PLoS ONE 6: e16976.[Crossref]
  40. Gu W, Killeen GF, Mbogo CM, Regens JL, Githure JI, Beier JC, , 2003. An individual-based model of Plasmodium falciparum malaria transmission on the coast of Kenya. Trans R Soc Trop Med Hyg 97: 4350.[Crossref]
  41. Okell LC, Griffin JT, Kleinschmidt I, Hollingsworth TD, Churcher TS, White MJ, Bousema T, Drakeley CJ, Ghani AC, , 2011. The potential contribution of mass treatment to the control of Plasmodium falciparum malaria. PLoS ONE 6: e20179.[Crossref]
  42. Lee DC, Chidambaram JD, Porco TC, Lietman TM, , 2005. Seasonal effects in the elimination of trachoma. Am J Trop Med Hyg 72: 468470.
  43. Lou Y, Zhao X-Q, , 2010. The periodic Ross-Macdonald model with diffusion and advection. Appl Anal 89: 10671089.[Crossref]
  44. Bacaër N, Guernaoui S, , 2006. The epidemic threshold of vector-borne diseases with seasonality. J Math Biol 53: 421436.[Crossref]
  45. Wang W, Zhao X-Q, , 2008. Threshold dynamics for compartmental epidemic models in periodic environments. J Dyn Differ Equ 20: 699717.[Crossref]
  46. Wolfram Mathematica, 2012. Random number generation. Champaign, IL: Wolfram Research, Inc.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0474
Loading
/content/journals/10.4269/ajtmh.13-0474
Loading

Data & Media loading...

Supplementary Data

Supplementary PDF

  • Received : 13 Aug 2013
  • Accepted : 09 Jul 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error