1921
Volume 91, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.13-0363
2014-07-02
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/14761645/91/1/27.html?itemId=/content/journals/10.4269/ajtmh.13-0363&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2001. Malaria Early Warning Systems, Concepts, Indicators and Partners: A Framework for Field Research in Africa. Geneva: World Health Organization/Roll Back Malaria/Technical Support Network for Prevention and Control of Malaria. [Google Scholar]
  2. World Health Organization, 2004. Malaria Epidemics: Forecasting, Prevention, Early Detection and Control: From Policy to Practice. Geneva: World Health Organization. [Google Scholar]
  3. World Health Organization, 2009. Protecting Health from Climate Change: Global Research Priorities. Geneva: World Health Organization. [Google Scholar]
  4. World Health Organization, 2010. Mathematical Modelling to Support Malaria Control and Elimination. Roll Back Malaria - Progress and Impact Series No. 5. Geneva: World Health Organization. [Google Scholar]
  5. Pan American Health Organization, 2006. Regional Strategic Plan for Malaria in the Americas 2006–2010. Washington, DC: Pan American Health Organization. [Google Scholar]
  6. Ruiz D, Connor SJ, Thomson MC, Thomson MC, García-Herrera R, Beniston M, , 2008. A multimodel framework in support of malaria surveillance and control. , eds. Seasonal Forecasts, Climatic Change, and Human Health – Health and Climate/Advances in Global Change Research. Volume 30. Springer Science + Business Media. Springer: Dordrecht, The Netherlands, 101125.[Crossref] [Google Scholar]
  7. Thomson MC, Connor SJ, , 2001. The development of malaria early warning systems for Africa. Trends Parasitol 17: 438445.[Crossref] [Google Scholar]
  8. Poveda G, Rojas W, Quiñones ML, Vélez ID, Mantilla RI, Ruiz D, Zuluaga JS, Rúa GL, , 2001. Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Perspect 109: 489493. [Google Scholar]
  9. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN, , 2006. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439: 576579.[Crossref] [Google Scholar]
  10. Ruiz D, Poveda G, Vélez ID, Quiñones ML, Rúa GL, Velásquez LE, Zuluaga JS, , 2006. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System. Malar J 5: 66.[Crossref] [Google Scholar]
  11. Poveda G, Quiñones ML, Vélez ID, Rojas W, Rúa GL, Ruiz D, Zuluaga JS, Velásquez LE, Zuluaga MD, Hernández O, , 2008. Desarrollo de un Sistema de Alerta Temprana para la Malaria en Colombia. Malaga, Spain: Universidad Internacional de Andalucía. [Google Scholar]
  12. Aron JL, May RM, Anderson RM, , 1982. The population dynamics of malaria. , ed. The Population Dynamics of Infectious Disease: Theory and Applications. London: Chapman and Hall, 139179.[Crossref] [Google Scholar]
  13. Mantilla G, Oliveros H, Barnston A, , 2009. The role of ENSO in understanding changes in Colombian's annual malaria burden by region, 1960–2006. Malar J 8: 6.[Crossref] [Google Scholar]
  14. Bouma MJ, Poveda G, Rojas W, Chavasse D, Quiñones M, Cox J, Patz J, , 1997. Predicting high risk years for malaria in Colombia using parameter of El Niño Southern Oscillation. Trop Med Int Health 2: 11221227.[Crossref] [Google Scholar]
  15. Poveda G, Rojas W, , 1997. Evidencias de la asociación entre brotes epidémicos de malaria en Colombia y el fenómeno El Niño-Oscilación del Sur. Revista de la Academia Colombiana de Ciencias 21: 421429. [Google Scholar]
  16. Gagnon A, Smoyer-Tomic K, Bush A, , 2002. The El Niño-Southern Oscillation and malaria epidemics in South America. Int J Biometeorol 46: 8189.[Crossref] [Google Scholar]
  17. World Bank - Latin America and the Caribbean, 2006. Colombia: Integrated National Adaptation Program. Available at: http://web.worldbank.org/external/projects/. Accessed June 1, 2010. [Google Scholar]
  18. Mejia LE, , 2007. Adapting to the Impacts of Climate Change on Health via the Integrated National Adaptation Project. Environment Matters. Annual Review 2007. Washington, DC: World Bank, 1213. [Google Scholar]
  19. World Health Organization, 2013. The World Malaria Report 2012. Geneva: World Health Organization. [Google Scholar]
  20. Roll Back Malaria, 2008. The Global Malaria Action Plan: for a Malaria Free World. The Roll Back Malaria Partnership. Geneva: World Health Organization. [Google Scholar]
  21. Marco JB, Harboe R, Salas JD, , 1993. Stochastic Hydrology and Its Use in Water Resources Systems Simulation and Optimization. NATO ASI Series, Series E: Applied Sciences. Volume 237. London: Kluwer Academic Publishers.[Crossref] [Google Scholar]
  22. Bruce-Chwatt LJ, , 1980. Essential Malariology. London: Heinemann. [Google Scholar]
  23. Ross R, , 1911. The Prevention of Malaria. London: Murry. [Google Scholar]
  24. Macdonald G, , 1957. The Epidemiology and Control of Malaria. Oxford, UK: Oxford University Press. [Google Scholar]
  25. Martens WJ, , 1997. Health Impacts of Climate Change and Ozone Depletion. An Eco-epidemiological Modelling Approach. Maastricht, The Netherlands: Maastricht University. [Google Scholar]
  26. Worrall E, Connor SJ, Thomson MC, , 2007. A model to simulate the impact of timing, coverage and transmission intensity on the effectiveness of indoor residual spraying (IRS) for malaria control. Trop Med Int Health 12: 7588.[Crossref] [Google Scholar]
  27. Kroeger A, Ordoñez-Gonzalez J, Aviña AI, , 2002. Malaria control reinvented: health sector reform and strategy development in Colombia. Trop Med Int Health 7: 450458.[Crossref] [Google Scholar]
  28. Valero M, , 2006. Malaria in Colombia: retrospective glance during the past 40 years. Rev Salud Publica (Bogota) 8: 141149.[Crossref] [Google Scholar]
  29. Ruiz D, Molina AM, Quiñónes ML, Jiménez MM, Thomson MC, Connor SJ, Gutiérrez ME, Zapata PA, López C, Londoño A, , 2011. Simulating Malaria Transmission Dynamics in the Pilot Areas of the Colombian Integrated National Adaptation Pilot Project. Medellin, Colombia: Escuela de Ingeniería de Antioquia. [Google Scholar]
  30. Garrett-Jones C, , 1964. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ 30: 241261. [Google Scholar]
  31. Servicio de Erradicación de Malaria, 1957. Plan de Erradicación. Bogota, Colombia: Ministerio de Salud. [Google Scholar]
  32. Olano VA, Brochero HL, Sáenz R, Quiñones ML, Molina JA, , 2001. Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomedica 21: 402408. [Google Scholar]
  33. Service Cordoba State Health, 2007. Informe de acciones desarrolladas por el Grupo de Entomología del Laboratorio Departamental de Salud Pública, Departamento de Córdoba.
  34. Last M, Kandel A, , 2001. Automated detection of outliers in real-world data. Proceedings of the 2nd International Conference on Intelligent Technologies, 2001. [Google Scholar]
  35. Grubbs F, , 1969. Procedures for detecting outlying observations in samples. Technometrics 11: 121.[Crossref] [Google Scholar]
  36. Quiñones ML, Suárez M, Fleming G, , 1987. Distribución y bionomía de los anofelinos de la Costa Pacífica de Colombia. Colomb Med 18: 19. [Google Scholar]
  37. Olano VA, Carrasquilla G, Méndez F, , 1997. Transmisión de la malaria urbana en Buenaventura, Colombia: aspectos entomológicos. Rev Panam Salud Publica 1: 287294.[Crossref] [Google Scholar]
  38. Rúa GL, Quiñones ML, Vélez ID, Zuluaga JS, Rojas W, Poveda G, Ruiz D, , 2005. Laboratory estimation of the effects of increasing temperatures on the duration of gonotrophic cycle of Anopheles albimanus (Diptera: Culicidae). Mem Inst Oswaldo Cruz 100: 515520.[Crossref] [Google Scholar]
  39. Rúa G, Quiñones ML, Vélez ID, Poveda G, Ruiz D, Rojas W, Zuluaga JS, , 2006. Diagnostics and Prediction of Climate Variability and Human Health Impacts in the Tropical Americas. Medellin, Colombia: Universidad Nacional de Colombia-Universidad de Antioquia-Corporación para Investigaciones Biológicas. Collaborative Research Network/Inter-American Institute for Global Change Research. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0363
Loading
/content/journals/10.4269/ajtmh.13-0363
Loading

Data & Media loading...

Supplementary PDF

  • Received : 19 Jun 2013
  • Accepted : 07 Feb 2014
  • Published online : 02 Jul 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error