Volume 89, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Using a novel analytical approach, weather dynamics and seasonal dengue virus transmission cycles were profiled for each Thailand province, 1983–2001, using monthly assessments of cases, temperature, humidity, and rainfall. We observed systematic differences in the structure of seasonal transmission cycles of different magnitude, the role of weather in regulating seasonal cycles, necessary versus optimal transmission “weather-space,” basis of large epidemics, and predictive indicators that estimate risk. Larger epidemics begin earlier, develop faster, and are predicted at when case counts are low. Temperature defines a viable range for transmission; humidity amplifies the potential within that range. This duality is central to transmission. Eighty percent of 1.2 million severe dengue cases occurred when mean temperature was 27–29.5°C and mean humidity was > 75%. Interventions are most effective when applied early. Most cases occur near , yet small reductions at can substantially reduce epidemic magnitude. Monitoring the is fundamental in effectively targeting interventions pre-emptively.

[open-access] This is an Open Access article distributed under the terms of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI, , 2012. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 6: e1760.[Crossref] [Google Scholar]
  2. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  3. Kroeger A, Nathan MB, Hombach J, Dayal-Drager R, Weber MW, , 2006. Dengue research and training supported through the World Health Organization. Ann Trop Med Parasitol 100: S97S101.[Crossref] [Google Scholar]
  4. Schmitz J, Roehrig J, Barrett A, Hombach J, , 2011. Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine 29: 72767284.[Crossref] [Google Scholar]
  5. Halstead SB, , 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239: 476481.[Crossref] [Google Scholar]
  6. Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisatakorn U, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW, , 2003. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68: 191202. [Google Scholar]
  7. Cazelles B, Chavez M, McMichael AJ, Hales S, , 2005. Nonstationary influence of El Ninõ on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106.[Crossref] [Google Scholar]
  8. Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, Shanks GD, Snow RW, Rogers DJ, , 2000. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA 97: 93359339.[Crossref] [Google Scholar]
  9. Wearing H, Rohani P, , 2006. Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci USA 103: 1180211807.[Crossref] [Google Scholar]
  10. Halstead SB, , 2008. Dengue virus-mosquito interactions. Annu Rev Entomol 53: 273291.[Crossref] [Google Scholar]
  11. Van Benthem BHB, Vanwambeke SO, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Somboon P, , 1995. Spatial patterns of and risk factors for seropositivity for dengue infection. Am J Trop Med Hyg 72: 201208. [Google Scholar]
  12. Rohani P, , 2009. The link between dengue incidence and El Ninõ southern oscillation. PLoS Med 6: e1000185.[Crossref] [Google Scholar]
  13. Johansson MA, Dominici F, Glass GE, , 2009. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3: e382.[Crossref] [Google Scholar]
  14. Johansson MA, Cummings DAT, Glass GE, , 2009. Multiyear climate variability and dengue—El Ninõ southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6: e1000168.[Crossref] [Google Scholar]
  15. Ferguson N, Anderson R, Gupta S, , 1999. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc Natl Acad Sci USA 96: 790794.[Crossref] [Google Scholar]
  16. Adams B, Holmes EC, Zhang C, Mammen MP, Nimmannitya S, Kalayanarooj S, Boots M, , 2006. Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok. Proc Natl Acad Sci USA 103: 1423414239.[Crossref] [Google Scholar]
  17. Kramer LD, Ebel GD, , 2003. Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60: 187232.[Crossref] [Google Scholar]
  18. Honorio NA, Nogueira RM, Codeço CT, Carvalho MS, Cruz OG, Magalhães M, Galvão de Araújo JM, Machado de Araújo ES, Gomes MQ, Pinheiro LS, Pinel C, Lourenço-de-Oliveira R, , 2009. Spatial evaluation and modeling of dengue seroprevalence and vector density in Rio de Janeiro, Brazil. PLoS Negl Trop Dis 3: e545.[Crossref] [Google Scholar]
  19. Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, Reiner RC, Jr Vilcarromero S, Elder JP, Halsey ES, Kochel TJ, Kitron U, Scott TW, , 2013. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci USA 110: 994999.[Crossref] [Google Scholar]
  20. Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ, Kitron U, Elder JP, Scott TW, , 2009. The role of human movement in the transmission of vector borne pathogens. PLoS Negl Trop Dis 3: e481.[Crossref] [Google Scholar]
  21. Focks DA, Barrera R, , 2007. Dengue transmission dynamics: assessment and implications for control. Available at: http://www.who.int/tdr/publications/publications/pdf/swg_dengue_2.pdf. Accessed March 3, 2010.
  22. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 7788.[Crossref] [Google Scholar]
  23. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  24. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for Dengue 2 virus. Am J Trop Med Hyg 36: 143152. [Google Scholar]
  25. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, , 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74607465.[Crossref] [Google Scholar]
  26. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.[Crossref] [Google Scholar]
  27. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J Med Entomol 30: 10181028.[Crossref] [Google Scholar]
  28. Focks DA, Daniels E, Haile DG, Keesling JE, , 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation and samples of simulation results. Am J Trop Med Hyg 53: 489506. [Google Scholar]
  29. Bar-Zeev M, , 1958. The effect of temperature on the growth rate and survival of the immature stages of Aëdes aegypti (L.). Bull Entomol Res 49: 157163.[Crossref] [Google Scholar]
  30. Bar-Zeev M, , 1957. The effect of extreme temperatures on different stages of Aëdes aegypti (L.). Bull Entomol Res 48: 593599.[Crossref] [Google Scholar]
  31. Tsuda Y, Takagi M, , 2001. Survival and development of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) larvae under a seasonally changing environment in Nagasaki, Japan. Environ Entomol 30: 855860.[Crossref] [Google Scholar]
  32. Yasuno M, Tonn RJ, , 1970. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 43: 319325. [Google Scholar]
  33. Pant CP, Yasuno M, , 1973. Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Ent 10: 219223.[Crossref] [Google Scholar]
  34. Scott TW, Clark GG, Lorenz LH, Amerasinghe PH, Reiter P, Edman JD, , 1993. Detection of multiple blood feeding in Aedes aegypti (Diptera: Culicidae) during a single gonotrophic cycle using a histologic technique. J Med Entomol 30: 9499.[Crossref] [Google Scholar]
  35. Thu HM, Aye KM, Thein S, , 1998. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitoes. Southeast Asian J Trop Med Public Health 29: 280284. [Google Scholar]
  36. Data source: Data transfer coordinated by Sopon Iamsirithaworn, Bureau of Epidemiology, Ministry of Public Health, Thailand 2011.
  37. World Meteorological Organization (WMO) World Weather Watch Program, 2006. Federal Climate Complex Global Surface Summary of Day Version 7. Available at: http://www.ncdc.noaa.gov/cgi-bin/res40.pl?page=gsod.html. Accessed September 9, 2010.
  38. Souris M, , 2001. GIS database of Thailand. Available at: http://rslultra.star.ait.ac.th/~souris/thailand.html. Accessed June 7, 2005.
  39. Cintron-Arias A, Castillo-Chavez C, Bettencourt LMA, Lloyd AL, Banks HT, , 2009. The estimation of the effective reproductive number from disease outbreak data. Math Biosci Eng 6: 261282.[Crossref] [Google Scholar]
  40. Carrington LB, Seifert SN, Lambrechts L, Scott TW, , 2013. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. J Med Entomol 50: 4351.[Crossref] [Google Scholar]
  41. Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW, , 2013. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE 8: e58824.[Crossref] [Google Scholar]
  42. Carrington LB, Armijos MV, Lambrechts L, Scott TW, , 2013. Fluctuations at low mean temperatures accelerate dengue virus transmission by Aedes aegypti . PLoS Negl Trop Dis 25: e2190.[Crossref] [Google Scholar]
  43. Carrington LB, Seifert SN, Armijos MV, Lambrechts L, Scott TW, , 2013. Reduction of Aedes aegypti vector competence for dengue virus under large temperature fluctuations. Am J Trop Med Hyg 88: 689697.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 04 Jun 2013
  • Accepted : 10 Jul 2013
  • Published online : 04 Dec 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error