Volume 91, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue fever transmission results from complex interactions between the virus, human hosts, and mosquito vectors—all of which are influenced by environmental factors. Predictive models of dengue incidence rate, based on local weather and regional climate parameters, could benefit disease mitigation efforts. Time series of epidemiological and meteorological data for the urban environment of Cali, Colombia are analyzed from January of 2000 to December of 2011. Significant dengue outbreaks generally occur during warm-dry periods with extreme daily temperatures confined between 18°C and 32°C—the optimal range for mosquito survival and viral transmission. Two environment-based, multivariate, autoregressive forecast models are developed that allow dengue outbreaks to be anticipated from 2 weeks to 6 months in advance. These models have the potential to enhance existing dengue early warning systems, ultimately supporting public health decisions on the timing and scale of vector control efforts.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2012. Dengue and Severe Dengue. Fact Sheet No. 117. World Health Organization. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed March 20, 2013. [Google Scholar]
  2. Gubler DJ, Clark GG, , 1995. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1: 5557.[Crossref] [Google Scholar]
  3. Ocampo CB, Salazar-Terreros MJ, Mina NJ, McAllister J, Brogdon W, , 2011. Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop 118: 3744.[Crossref] [Google Scholar]
  4. Carbajo AE, Cardo MV, Vezzani D, , 2012. Is temperature the main cause of dengue rise in non-endemic countries? The case of Argentina. Int J Health Geogr 11: 111.[Crossref] [Google Scholar]
  5. World Health Organization, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control—New Edition. Geneva: World Health Organization. [Google Scholar]
  6. Gubler DJ, Trent DW, , 1994. Emergence of epidemic dengue/dengue hemorrhagic fever as a public health problem in the Americas. Infect Agents Dis 2: 383393. [Google Scholar]
  7. Derouich M, Boutayeb A, Twizell EH, , 2003. A model of dengue fever. Biomed Eng Online 2: 110.[Crossref] [Google Scholar]
  8. Clark DV, Mammen MP, Nisalak A, Puthimethee V, Endy TP, , 2005. Economic impact of dengue fever and dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg 72: 786791. [Google Scholar]
  9. Hopp MJ, Foley JA, , 2003. World-wide fluctuations in dengue fever cases related to climate variability. Clim Res 25: 8594.[Crossref] [Google Scholar]
  10. Gubler DJ, Gubler DJ, Kuno G, , 1997. Dengue and dengue hemorrhagic fever: Its history and resurgence as a global public health problem. , eds. Dengue and Dengue Hemorrhagic Fever. New York, NY: CAB International, 35. [Google Scholar]
  11. Rodgers DJ, Wilson AJ, Hay SI, Graham AJ, , 2006. The global distribution of yellow fever and dengue. Adv Parasitol 62: 181220.[Crossref] [Google Scholar]
  12. Gonzalez R, Suarez MF, , 1995. Sewers—the principal Aedes aegypti breeding sites in Cali, Colombia. Am J Trop Med Hyg 53: 160. [Google Scholar]
  13. Barrera R, Amador M, MacKay AJ, , 2011. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl Trop Dis 5: e1378.[Crossref] [Google Scholar]
  14. Christophers SR, , 1960. Aedes aegypti the Yellow Fever Mosquito: Its Life History, Bionomics and Structure. Cambridge, United Kingdom: Cambridge University Press. [Google Scholar]
  15. Rueda LM, Patel KJ, Axtell RC, Stinner RE, , 1990. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti . J Med Entomol 27: 892898.[Crossref] [Google Scholar]
  16. Jetten TH, Focks DA, , 1997. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 57: 285297. [Google Scholar]
  17. Rowley WA, Graham CL, , 1968. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti . J Insect Physiol 14: 12511257.[Crossref] [Google Scholar]
  18. Martens WJM, Jetten TH, Focks DA, , 1997. Sensitivity of malaria, schistosomiasis, and dengue to global warming. Clim Change 35: 145156.[Crossref] [Google Scholar]
  19. Chadee DD, Shivnauth B, Rawlins SC, Chen AA, , 2007. Climate, mosquito indices and the epidemiology of dengue fever in Trinidad (2002–2004). Ann Trop Med Parasitol 101: 6977.[Crossref] [Google Scholar]
  20. Yang HM, Marcoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV, , 2009. Assessing the effects of temperature on the population of Aedes aegypti – the vector of dengue. Epidemiol Infect 137: 11881202.[Crossref] [Google Scholar]
  21. Azil AH, Long SA, Ritchie SA, Williams CR, , 2010. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health 15: 11901197.[Crossref] [Google Scholar]
  22. Ellis AM, Garcia AJ, Focks DA, Morrison AC, Scott TW, , 2011. Parameterization and sensitivity analysis of a complex simulation model for mosquito population dynamics, dengue transmission, and their control. Am J Trop Med Hyg 85: 257264.[Crossref] [Google Scholar]
  23. Reed W, Carroll J, Agramonte A, , 2001. Experimental yellow fever. Mil Med 166: 5560. [Google Scholar]
  24. Parker AH, , 1952. The effect of a difference in temperature and humidity on certain reactions of female Aedes aegypti . Bull Entomol Res 43: 221229.[Crossref] [Google Scholar]
  25. Patz JA, Martens WJM, Focks DA, Jetten TH, , 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147153.[Crossref] [Google Scholar]
  26. Fouque F, Carinci R, Gaborit P, Issaly J, Bicout DJ, Sabatier P, , 2006. Aedes aegypti survival and dengue transmission patterns in French Guiana. J Vector Ecol 31: 390399.[Crossref] [Google Scholar]
  27. Hii YL, Rocklov J, Ng N, Tang CS, Pang FY, Sauerborn R, , 2009. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Global Health Action 2009: 2. [Google Scholar]
  28. Moore CG, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, Rivera-Correa E, , 1978. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27: 12251231. [Google Scholar]
  29. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, , 2000. Longitudinal studies of Aedes aegypti in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 7788.[Crossref] [Google Scholar]
  30. Reiter P, , 2001. Climate change and mosquito-borne disease. Environ Health Perspect 109: 141161.[Crossref] [Google Scholar]
  31. Watts DM, Burke DS, Harrison BA, Whitmore RE, Nisalak A, , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue-2 virus. Am J Trop Med Hyg 36: 143152. [Google Scholar]
  32. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, , 2011. Impact of daily temperature fluctuations on dengue viral transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74607465.[Crossref] [Google Scholar]
  33. Wu PC, Guo HR, Lung SC, Lin CY, Su HJ, , 2007. Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103: 5057.[Crossref] [Google Scholar]
  34. Hii YL, Zhu H, Ng N, Ng LC, Rocklov J, , 2012. Forecast of dengue incidence using temperature and rainfall. PLoS Negl Trop Dis 6: e1908.[Crossref] [Google Scholar]
  35. Hii YL, Rocklov J, Wall S, Ng LC, Tang CS, Ng N, , 2012. Optimal lead time for dengue forecast. PLoS Negl Trop Dis 6: e1848.[Crossref] [Google Scholar]
  36. Descloux E, Mangeas M, Menkes CE, Lengaigne M, Leroy A, Tehei T, Guillaumot L, Teurlai M, Gourinat AC, Benzler J, Pfannstiel A, Grangeon JP, Degallier N, De Lamballerie X, , 2012. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis 6: e1470.[Crossref] [Google Scholar]
  37. Brunkard JM, Cifuentes E, Rothenberg SJ, , 2008. Assessing the role of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Public Health Mexico 50: 227234. [Google Scholar]
  38. Chowell G, Sanchez F, , 2006. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68: 4044. [Google Scholar]
  39. Gharbi M, Quenel P, Gustave J, Cassadou S, La Ruche G, Girdary L, Marrama L, , 2011. Time series analysis of dengue incidence in Guadeloupe, French West Indies: forecasting models using climate variables as predictors. BMC Infect Dis 11: 113.[Crossref] [Google Scholar]
  40. Degallier N, Favier C, Menkes C, Lengaigne M, Ramalho WM, Souza R, Servain J, Boulanger JP, , 2010. Toward an early warning system for dengue prevention: modeling climate impact on dengue transmission. Clim Change 98: 581592.[Crossref] [Google Scholar]
  41. Casas I, Delmelle E, Varela A, , 2010. A space-time approach to diffusion of health service provision information. Int Reg Sci Rev 33: 134156.[Crossref] [Google Scholar]
  42. Delmelle E, Delmelle EC, Casas I, Barto T, , 2011. H.E.L.P: a GIS-based health exploratory analysis tool for practitioners. Appl Spatial Anal Policy 4: 113137.[Crossref] [Google Scholar]
  43. Delmelle E, Casas I, Rojas J, Varela A, , 2013. An exploratory analysis of spatio-temporal patterns of dengue fever in Cali, Colombia. Int J Appl Geospatial Res 4: 5875.[Crossref] [Google Scholar]
  44. Mendez F, Barreto M, Arias JF, Rengifo G, Munoz J, Burbano ME, Parra B, , 2006. Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia. Am J Trop Med Hyg 74: 678683. [Google Scholar]
  45. Menne MJ, Durre I, Vose RS, Gleason BE, Houston TG, , 2012. An overview of the global historical climatology network daily database. J Atmos Ocean Tech 29: 897910.[Crossref] [Google Scholar]
  46. Durre I, Menne MJ, Gleason BE, Houston TG, Vose RS, , 2010. Robust automated quality control of daily surface observations. J Appl Meteorol Climatol 49: 16151633.[Crossref] [Google Scholar]
  47. Trenberth KE, , 1997. The definition of El Niño. Bull Am Meteor Soc 78: 27712777.[Crossref] [Google Scholar]
  48. Wexler JM, , 2012. Effects of the variation of regional weather on the spread of dengue fever in Cali, Colombia. MS thesis, University of North Carolina, Charlotte, NC.
  49. Chaves LF, Pascual M, , 2007. Comparing models for early warning systems of neglected tropical diseases. PLoS Negl Trop Dis 1: e33.[Crossref] [Google Scholar]
  50. Hurtado-Diaz M, Riojas-Rodriguez H, Rothenberg SJ, Gomez-Dantes H, Cifuentes E, , 2007. Short communication: impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health 12: 13271337.[Crossref] [Google Scholar]
  51. Tipayamongkholgul M, Fang CT, Klinchan S, Liu CM, King CC, , 2009. Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996–2005. BMC Public Health 9: 422.[Crossref] [Google Scholar]
  52. Cazelles B, Chavez M, McMichael AJ, Hales S, , 2005. Non-stationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2: 313318.[Crossref] [Google Scholar]
  53. Johansson MA, Cummings DAT, Glass GE, , 2009. Multiyear climate variability and dengue - El Niño Southern Oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6: e1000168.[Crossref] [Google Scholar]
  54. Ropelewski CF, Halpert MS, , 1987. Global and regional scale precipitation patterns associated with the El Niño Southern Oscillation. Mon Wea Rev 115: 16061626.[Crossref] [Google Scholar]
  55. Hill KJ, Taschetto AS, England MH, , 2009. South American rainfall impacts associated with inter-El Niño variations. Geophys Res Lett 36: L19702.[Crossref] [Google Scholar]
  56. Gagnon AS, Bush ABG, Smoyer-Tomic KE, , 2001. Dengue epidemics and the El Niño Southern Oscillation. Clim Res 19: 3543.[Crossref] [Google Scholar]
  57. Sota T, Mogi M, , 1992. Interspecific variation in survival times in Aedes (Stegomyia) mosquito eggs is correlated with habitat and egg size. Oecolgia 90: 353358.[Crossref] [Google Scholar]
  58. Fuller DO, Troyo A, Beier JC, , 2009. El Niño Southern Oscillation and vegetation dynamics as predictors of dengue fever cases in Costa Rica. Environ Res Lett 4: e014011.[Crossref] [Google Scholar]
  59. Tran A, Deparis X, Dussart P, Morvan J, Rabarison P, Remy F, Polidori L, Gardon J, , 2004. Dengue spatial and temporal patterns, French Guiana, 2001. Emerg Infect Dis 10: 615621.[Crossref] [Google Scholar]
  60. Ocambo CB, Wesson DM, , 2004. Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia. Am J Trop Med Hyg 71: 506533. [Google Scholar]
  61. Roberts DR, Andre RG, , 1994. Insecticide resistance issues in vector borne disease control. Am J Trop Med Hyg 50: 2134. [Google Scholar]
  62. Zhang C, , 2005. Madden-Julian Oscillation. Rev Geophys 43: 136.[Crossref] [Google Scholar]
  63. Hurrell JW, , 1995. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269: 676679.[Crossref] [Google Scholar]
  64. Heintze C, Garrido MV, Kroeger A, , 2007. What do community-based dengue control programs achieve? A systematic review of published evaluations. Trans R Soc Trop Med Hyg 101: 317325.[Crossref] [Google Scholar]
  65. Ocampo CB, Gonzalez C, Morales CA, Perez M, Wesson D, Apperson CS, , 2009. Evaluation of community-based strategies for Aedes aegypti control inside houses. Biomedica 29: 282297.[Crossref] [Google Scholar]
  66. Farrar J, Focks D, Gubler D, Barrera R, Guzman MG, Simmons C, Kalayanarooj S, Lum L, McCall PJ, Lloyd L, Horstick O, Dayal-Drager R, Nathan MB, Kroger A, , 2007. Editorial: towards a global dengue research agenda. Trop Med Int Health 12: 695699.[Crossref] [Google Scholar]
  67. Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ, , 2009. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 22242233.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 30 May 2013
  • Accepted : 02 Apr 2014
  • Published online : 03 Sep 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error