Volume 90, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Species and subspecies of the species complex are recognized as intermediate hosts of . Of these species and subspecies, is distributed throughout the Philippines. This study used 12S ribosomal RNA sequences to explore the genetic structure of populations in the Philippines. Three subspecies, , , and of this group were also examined. The phylogenetic tree and haplotypes network showed that separated from the subspecies. Ten haplotypes (Oq1–Oq10) clustered in relation to their geographic origin. Genetic differentiation ( ) and estimated gene flow (Nm) among populations showed significant differences, ranging from 0.556–1.000 to 0.00–0.74, respectively. Genetic differences among groups ( = 0.466), populations within a group ( = 0.727), and populations ( = 0.854) were observed. These results indicate that the populations in the Philippines have a substructure associated with their geographic origin.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Berger SA, , 2011. Infectious Diseases of the Philippines. Gideon e-books, 379 pp. Available at: http://www.gideononline.com/ebooks/country/infectious-diseases-of-the-philippines/. [Google Scholar]
  2. Berger SA, , 2011. Schistosoma Japonicum: Global Status. Gideon e-books, 14 pp. Available at: http://www.gideononline.com/ebooks/disease/schistosoma-japonicum-global-status/. [Google Scholar]
  3. Fernandez TJ, Jr Tarafder MR, Balolong E, Jr Joseph L, Willingham AL, 3rd Belisle P, Webster JP, Olveda RM, McGarvey ST, Carabin H, , 2007. Prevalence of Schistosoma japonicum infection among animals in fifty villages of Samar Province, the Philippines. Vector Borne Zoonotic Dis 7: 147155.[Crossref] [Google Scholar]
  4. Tarafder MR, Balolong E, Jr Carabin H, Belisle P, Tallo V, Joseph L, Alday P, Gonzales RO, Riley S, Olveda R, McGarvey ST, , 2006. A cross-sectional study of the prevalence of intensity of infection with Schistosoma japonicum in 50 irrigated and rain-fed villages in Samar Province, the Philippines. BMC Public Health 6: 61.[Crossref] [Google Scholar]
  5. Hauswald AK, Remais JV, Xiao N, Davis GM, Lu D, Bale MJ, Wilke T, , 2011. Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area. Parasit Vectors 4: 206.[Crossref] [Google Scholar]
  6. Zhao QP, Jiang MS, Littlewood DT, Nie P, , 2010. Distinct genetic diversity of Oncomelania hupensis, intermediate host of Schistosoma japonicum in mainland China as revealed by ITS sequences. PLoS Negl Trop Dis 4: e611.[Crossref] [Google Scholar]
  7. Davis GM, Wilke T, Zhang Y, Xu XJ, Qiu CP, Spolsky CM, Oiu DC, Li Y, Xia MY, Feng Z, , 1999. Snail-Schistosoma, Paragonimus interaction in China: population ecology, genetic diversity, coevolution and emerging diseases. Malacologia 41: 355377. [Google Scholar]
  8. Webster JP, Davies CM, , 2001. Coevolution and compatibility in the snail-schistosome system. Parasitology 123 (Suppl): S41S56. [Google Scholar]
  9. Webster JP, Shrivastava J, Johnson PJ, Blair L, , 2007. Is host-schistosome coevolution going anywhere? BMC Evol Biol 7: 91.[Crossref] [Google Scholar]
  10. Shi CH, Wilke T, Davis GM, Xia MY, Qiu CP, , 2002. Population genetic, micro-phylogeography, ecology, and susceptibility to schistosome infection of Chinese Oncomelania hupensis hupensis (Gastropoda: Rissooidea: Pomatiopsidae) in the Miao river system. Malacologia 44: 333347. [Google Scholar]
  11. Hope M, McManus DP, , 1994. Genetic variation in geographically isolated populations and subspecies of Oncomelania hupensis determined by a PCR-based RFLP method. Acta Trop 57: 7582.[Crossref] [Google Scholar]
  12. Okamoto M, Lo C-T, Tiu WU, Qui D-C, Hadidjaja P, Upatham S, Sugiyama H, Taguchi T, Hirai H, Saitoh Y, Habe S, Kawanaka M, Hirata M, Agatsuma T, , 2003. Phylogenetic relationships of snails of the genera Oncomelania and Tricula inferred from the mitochondrial 12S rRNA gene. Jpn J Trop Med Hyg 31: 510.[Crossref] [Google Scholar]
  13. Woodruff DS, Staub KC, Upatham ES, Viyanant V, Yuan HC, , 1998. Genetic variation in Oncomelania hupensis: Schistosoma japonicum transmitting snails in China and the Philippines are distinct species. Malacologia 29: 347361. [Google Scholar]
  14. Viyanant V, Upatham ES, Blas BL, Yuan HC, , 1987. Analysis of allozymes by electrofocusing in schistosome snail hosts (Oncomelania hupensis) from China and the Philippines. Malacol Rev 20: 9196. [Google Scholar]
  15. Woodruff DS, Carpenter MP, Upatham ES, Viyanant V, , 1999. Molecular phylogeography of Oncomelania lindoensis (Gastropoda: Pomatiopsidae), the intermediate host of Schistosoma japonicum in Sulawesi. J Molluscan Stud 65: 2131.[Crossref] [Google Scholar]
  16. Slatkin M, Hudson RR, , 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129: 555562. [Google Scholar]
  17. Librado P, Rozas J, , 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 14511452.[Crossref] [Google Scholar]
  18. Excoffier L, Lischer HE, , 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564567.[Crossref] [Google Scholar]
  19. Bandelt HJ, Forster P, Rohl A, , 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 3748.[Crossref] [Google Scholar]
  20. Felsenstein J, , 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Seattle, WA: Department of Genome Sciences, University of Washington. [Google Scholar]
  21. Thomas JA, Welch JJ, Lanfear R, Bromham L, , 2010. A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol 27: 11731180.[Crossref] [Google Scholar]
  22. Woodruff DS, Merenlender AM, Upatham ES, Viyanant V, , 1987. Genetic variation and differentiation of three Schistosoma species from the Philippines, Laos, and Peninsular Malaysia. Am J Trop Med Hyg 36: 345354. [Google Scholar]
  23. Kiatsopit N, Sithithaworn P, Saijuntha W, Petney TN, Andrews RH, , 2013. Opisthorchis viverrini: Implications of the systematics of first intermediate hosts, Bithynia snail species in Thailand and Lao PDR. Infect Genet Evol 14: 313319.[Crossref] [Google Scholar]
  24. Saijuntha W, Sithithaworn P, Wongkham S, Laha T, Pipitgool V, Tesana S, Chilton NB, Petney TN, Andrews RH, , 2007. Evidence of a species complex within the food-borne trematode Opisthorchis viverrini and possible co-evolution with their first intermediate hosts. Int J Parasitol 37: 695703.[Crossref] [Google Scholar]
  25. Davis GM, Zhang Y, Guo YH, Spolsky CM, , 1995. Population genetics and systematic status of Oncomelania hupensis (Gastropoda: Pomatiopsidae) throughout China. Malacologia 37: 133156. [Google Scholar]
  26. Li SZ, Wang YX, Yang K, Liu Q, Wang Q, Zhang Y, Wu XH, Guo JG, Bergquist R, Zhou XN, , 2009. Landscape genetics: the correlation of spatial and genetic distances of Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum in mainland China. Geospat Health 3: 221231.[Crossref] [Google Scholar]
  27. Zhou YB, Zhao GM, Jiang QW, , 2008. Genetic variability of Schistosoma japonicum (Katsorada, 1904) intermediate hosts Oncomelania hupensis (Gredler, 1881) (Gastropoda: Rissooidea). Annal Zool 58: 881889.[Crossref] [Google Scholar]
  28. Zhao QP, Jiang MS, Dong HF, Nie P, , 2012. Diversifiation of Schistosoma japonicum in mainland China revealed by mitochondrial DNA. PLoS Negl Trop Dis 6: e1503.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 14 May 2013
  • Accepted : 12 Jan 2014
  • Published online : 04 Jun 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error