Volume 89, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The vector competence and bionomics of form pipiens L. and f. molestus Forskäl were evaluated for populations from the Sacramento Valley. Both f. pipiens and f. molestus females became infected, produced disseminated infections, and were able to transmit West Nile virus. Form molestus females also transmitted West Nile virus vertically to egg rafts and F progeny, whereas f. pipiens females only transmitted to egg rafts. complex from urban Sacramento blood-fed on seven different avian species and two mammalian species. Structure analysis of blood-fed mosquitoes identified K = 4 genetic clusters: f. molestus, f. pipiens, a group of genetically similar hybrids (Cluster X), and admixed individuals. When females were exposed as larvae to midwinter conditions in bioenvironmental chambers, 85% ( = 79) of aboveground complex females and 100% ( = 34) of underground f. molestus females did not enter reproductive diapause.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Spielman A, , 2001. Structure and seasonality of nearctic Culex pipiens populations. Ann N Y Acad Sci 951: 220234.[Crossref] [Google Scholar]
  2. Vinogradova EB, , 2000. Culex pipiens pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. Sofia, Bulgaria: Pensoft. [Google Scholar]
  3. Su T, Webb JP, Meyer RP, Mulla MS, , 2003. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. J Vector Ecol 28: 7989. [Google Scholar]
  4. Reisen WK, Meyer RP, Milby MM, , 1986. Overwintering studies on Culex tarsalis (Diptera: Culicidae) in Kern County, California: temporal changes in abundance and reproductive status with comparative observations on C. quinquefasciatus (Diptera: Culicidae). Ann Entomol Soc Am 79: 677685.[Crossref] [Google Scholar]
  5. Eldridge BF, , 1968. The effect of temperature and photoperiod on blood-feeding and ovarian development in mosquitoes of the Culex pipiens complex. Am J Trop Med Hyg 17: 133140. [Google Scholar]
  6. Harbach RE, Harrison BA, Gad AM, , 1984. Culex (Culex) Molestus Forskal (Diptera, Culicidae)—neotype designation, description, variation, and taxonomic Status. Proc Entomol Soc Wash 86: 521542. [Google Scholar]
  7. Tabachnick WJ, Powell JR, , 1983. Genetic analysis of Culex pipiens populations in the central valley of California. Ann Entomol Soc Am 76: 715720.[Crossref] [Google Scholar]
  8. Urbanelli S, Silvestrini F, Reisen WK, DeVito E, Bullini L, , 1997. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera: Culicidae). J Med Entomol 34: 116127.[Crossref] [Google Scholar]
  9. Cornel AJ, McAbee RD, Rasgon J, Stanich MA, Scott TW, Coetzee M, , 2003. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40: 3651.[Crossref] [Google Scholar]
  10. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref] [Google Scholar]
  11. Reisen WK, Barker CM, Fang Y, Martinez VM, , 2008. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? J Med Entomol 45: 11261138.[Crossref] [Google Scholar]
  12. Vaidyanathan R, Scott TW, , 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.[Crossref] [Google Scholar]
  13. Kilpatrick AM, Fonseca DM, Ebel GD, Reddy MR, Kramer LD, , 2010. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am J Trop Med Hyg 83: 607613.[Crossref] [Google Scholar]
  14. Farajollahi A, Fonseca DM, Kramer LD, Marm Kilpatrick A, , 2011. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect Genet Evol 11: 15771585.[Crossref] [Google Scholar]
  15. Tahori AS, Sterk VV, Goldblum N, , 1955. Studies on the dynamics of experimental transmission of West Nile virus by Culex molestus . Am J Trop Med Hyg 4: 10151027. [Google Scholar]
  16. Turell MJ, Mores CN, Dohm DJ, Komilov N, Paragas J, Lee JS, Shermuhemedova D, Endy TP, Kodirov A, Khodjaev S, , 2006. Laboratory transmission of Japanese encephalitis and West Nile viruses by molestus form of Culex pipiens (Diptera: Culicidae) collected in Uzbekistan in 2004. J Med Entomol 43: 296300.[Crossref] [Google Scholar]
  17. Kassim NF, Webb CE, Russell RC, , 2012. Is the expression of autogeny by Culex molestus Forskal (Diptera: Culicidae) influenced by larval nutrition or by adult mating, sugar feeding, or blood feeding? J Vector Ecol 37: 162171.[Crossref] [Google Scholar]
  18. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol 40: 743746.[Crossref] [Google Scholar]
  19. Nasci RS, Savage HM, White DJ, Miller JR, Cropp BC, Godsey MS, Kerst AJ, Bennett P, Gottfried K, Lanciotti RS, , 2001. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg Infect Dis 7: 742744.[Crossref] [Google Scholar]
  20. Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, Oconnor P, Carney R, Cahoon-Young B, Shafii M, Brault AC, , 2006. Overwintering of West Nile virus in Southern California. J Med Entomol 43: 344355.[Crossref] [Google Scholar]
  21. Anderson JF, Main AJ, , 2006. Importance of vertical and horizontal transmission of West Nile virus by Culex pipiens in the Northeastern United States. J Infect Dis 194: 15771579.[Crossref] [Google Scholar]
  22. Dohm DJ, Sardelis MR, Turell MJ, , 2002. Experimental vertical transmission of West Nile virus by Culex pipiens (Diptera: Culicidae). J Med Entomol 39: 640644.[Crossref] [Google Scholar]
  23. Farajollahi A, Crans WJ, Bryant P, Wolf B, Burkhalter KL, Godsey MS, Aspen SE, Nasci RS, , 2005. Detection of West Nile viral RNA from an overwintering pool of Culex pipens pipiens (Diptera: Culicidae) in New Jersey, 2003. J Med Entomol 42: 490494.[Crossref] [Google Scholar]
  24. Bugbee LM, Forte LR, , 2004. The discovery of West Nile virus in overwintering Culex pipiens (Diptera: Culicidae) mosquitoes in Lehigh County, Pennsylvania. J Am Mosq Control Assoc 20: 326327. [Google Scholar]
  25. McAbee RD, Green EN, Holeman J, Christiansen J, Frye N, Dealey K, Mulligan FS, 3rd Brault AC, Cornel AJ, , 2008. Identification of Culex pipiens complex mosquitoes in a hybrid zone of West Nile virus transmission in Fresno County, California. Am J Trop Med Hyg 78: 303310. [Google Scholar]
  26. Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P, , 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11: 425429.[Crossref] [Google Scholar]
  27. Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED, , 2009. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80: 268278. [Google Scholar]
  28. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, McMillen L, Unnasch EA, Unnasch TR, , 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7: 365386.[Crossref] [Google Scholar]
  29. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, , 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref] [Google Scholar]
  30. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, , 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.[Crossref] [Google Scholar]
  31. Savage HM, Ceianu C, Nicolescu G, Karabatsos N, Lanciotti R, Vladimirescu A, Laiv L, Ungureanu A, Romanca C, Tsai TF, , 1999. Entomologic and avian investigations of an epidemic of West Nile fever in Romania in 1996, with serologic and molecular characterization of a virus isolate from mosquitoes. Am J Trop Med Hyg 61: 600611. [Google Scholar]
  32. Savage HM, Kothera L, , 2012. The Culex pipiens complex in the Mississippi River Basin: identification, distribution, and bloodmeal hosts. J Am Mosq Control Assoc 28(4s): 9399.[Crossref] [Google Scholar]
  33. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, , 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671. [Google Scholar]
  34. Huang S, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, , 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref] [Google Scholar]
  35. Thiemann TC, Lemenager DA, Kluh S, Carroll BD, Lothrop HD, Reisen WK, , 2012. Spatial variation in host feeding patterns of Culex tarsalis and the Culex pipiens complex (Diptera: Culicidae) in California. J Med Entomol 49: 903916.[Crossref] [Google Scholar]
  36. Montgomery MJ, Thiemann T, Macedo P, Brown DA, Scott TW, , 2011. Blood-feeding patterns of the Culex pipiens complex in Sacramento and Yolo Counties, California. J Med Entomol 48: 398404.[Crossref] [Google Scholar]
  37. Molaei G, Cummings RF, Su T, Armstrong PM, Williams GA, Cheng M-L, Webb JP, Andreadis TG, , 2010. Vector-host interactions governing epidemiology of West Nile virus in Southern California. Am J Trop Med Hyg 83: 12691282.[Crossref] [Google Scholar]
  38. Huang SM, Molaei G, Andreadis TG, , 2008. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 79: 518527. [Google Scholar]
  39. Kent RJ, Harrington LC, Norris DE, , 2007. Genetic differences between Culex pipiens f. molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. J Med Entomol 44: 5059.[Crossref] [Google Scholar]
  40. McAbee RD, Kang KD, Stanich MA, Christiansen JA, Wheelock CE, Inman AD, Hammock BD, Cornel AJ, , 2004. Pyrethroid tolerance in Culex pipiens pipiens var molestus from Marin County, California. Pest Manag Sci 60: 359368.[Crossref] [Google Scholar]
  41. Mutebi JP, Savage HM, , 2009. Discovery of Culex pipiens pipiens form molestus in Chicago. J Am Mosq Control Assoc 25: 500503.[Crossref] [Google Scholar]
  42. Strickman D, Fonseca DM, , 2012. Autogeny in Culex pipiens complex mosquitoes from the San Francisco Bay Area. Am J Trop Med Hyg 87: 719726.[Crossref] [Google Scholar]
  43. Kothera L, Godsey M, Mutebi J-P, Savage HM, , 2010. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J Med Entomol 47: 805813. [Google Scholar]
  44. Nelms BM, Macedo PA, Kothera L, Savage HM, Reisen WK, , 2013. Overwintering biology of Culex mosquitoes (Diptera: Culicidae) in the Sacramento Valley of California. J Med Entomol 50: 773790.[Crossref] [Google Scholar]
  45. Lee Y, Seifert SN, Nieman CC, McAbee RD, Goodell P, Fryxell RT, Lanzaro GC, Cornel AJ, , 2012. High degree of single nucleotide polymorphisms in California Culex pipiens (Diptera: Culicidae) sensu lato. J Med Entomol 49: 299306.[Crossref] [Google Scholar]
  46. Harbison JE, Metzger ME, Walton WE, Hu R, , 2009. Evaluation of factors for rapid development of Culex quinquefasciatus in belowground stormwater treatment devices. J Vector Ecol 34: 182190.[Crossref] [Google Scholar]
  47. Kothera L, Nelms BM, Reisen W, Savage HM, , 2013. Population genetic and admixture analyses of Culex pipiens complex (Diptera: Culicidae) populations in California, United States. Am J Trop Med Hyg 89: 11541167.[Crossref] [Google Scholar]
  48. Aitken T, , 1977. An in vitro feeding technique for artificially demonstrating virus transmission by mosquitoes. Mosq News 37: 130133. [Google Scholar]
  49. Thiemann TC, Brault AC, Ernest HB, Reisen WK, , 2012. Development of a high-throughput microsphere-based molecular assay to identify 15 common bloodmeal hosts of Culex mosquitoes. Mol Ecol Resources 12: 238246.[Crossref] [Google Scholar]
  50. Cooper J, Sykes G, King S, Cottrill K, Ivanova N, Hanner R, Ikonomi P, , 2007. Species identification in cell culture: a two-pronged molecular approach. In vitro Cell Dev-An 43: 344351.[Crossref] [Google Scholar]
  51. Ivanova NV, Dewaard JR, Hebert PD, , 2006. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6: 9981002.[Crossref] [Google Scholar]
  52. Giglioli M, , 1963. Aids to ovarian dissection for age determination in mosquitoes. Mosq News 23: 156159. [Google Scholar]
  53. Detinova TS, , 1962. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 47: 13. [Google Scholar]
  54. Clements A, Boocock M, , 1984. Ovarian development in mosquitoes: stages of growth and arrest, and follicular resorption. Physiol Entomol 9: 18.[Crossref] [Google Scholar]
  55. Kawai S, , 1969. Studies on the follicular development and feeding activity of the females of Culex tritaeniorhynchus with special reference to those in autumn. Trop Med 11: 145169. [Google Scholar]
  56. Reisen WK, Meyer RP, Milby MM, , 1986. Overwintering studies on Culex tarsalis (Diptera, Culicidae) in Kern County, California—survival and the experimental induction and termination of diapause. Ann Entomol Soc Am 79: 664673.[Crossref] [Google Scholar]
  57. Spielman A, Wong JA, , 1973. Studies on autogeny in natural populations of Culex pipiens. III. Midsummer preparation for hibernation in anautogenous populations. J Med Entomol 10: 319324.[Crossref] [Google Scholar]
  58. Polovodova V, , 1949. The determination of the physiological age of female Anopheles, by the number of gonotrophic cycles completed. Med Parazitol Parazitar Bolezni 18: 352355. [Google Scholar]
  59. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, , 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 40664071. [Google Scholar]
  60. Shi PY, Kramer LD, , 2003. Molecular detection of West Nile virus RNA. Expert Rev Mol Diagn 3: 357366.[Crossref] [Google Scholar]
  61. Kramer LD, Wolfe TM, Green EN, Chiles RE, Fallah H, Fang Y, Reisen WK, , 2002. Detection of encephalitis viruses in mosquitoes (Diptera: Culicidae) and avian tissues. J Med Entomol 39: 312323.[Crossref] [Google Scholar]
  62. Turell MJ, Monath TP, , 1988. Horizontal and vertical transmission of viruses by insect and tick vectors. , ed. The Arboviruses: Epidemiology and Ecology. Volume 1. Boca Raton, FL: CRC, 127152. [Google Scholar]
  63. Biggerstaff BJ, , 2003. PooledInfRate: A Microsoft Excel Add-In to Compute Prevalence Estimates from Pooled Samples. Fort Collins, CO: Centers for Disease Control and Prevention. [Google Scholar]
  64. Reisen WK, Fang Y, Martinez VM, , 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.[Crossref] [Google Scholar]
  65. Hardy JL, Houk EJ, Kramer LD, Reeves WC, , 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28: 229262.[Crossref] [Google Scholar]
  66. Rasgon JL, Scott TW, , 2003. Wolbachia and cytoplasmic incompatibility in the California Culex pipiens mosquito species complex: parameter estimates and infection dynamics in natural populations. Genetics 165: 20292038. [Google Scholar]
  67. Anderson JF, Main AJ, Delroux K, Fikrig E, , 2008. Extrinsic incubation periods for horizontal and vertical transmission of West Nile virus by Culex pipiens pipiens (Diptera: Culicidae). J Med Entomol 45: 445451.[Crossref] [Google Scholar]
  68. Nelms BM, Fechter-Leggett E, Carroll B, Macedo P, Kluh S, Reisen WK, , 2013. Experimental and natural vertical transmission of West Nile virus by California Culex (Diptera: Culicidae) mosquitoes. J Med Entomol 50: 371378.[Crossref] [Google Scholar]
  69. Anderson JF, Main AJ, Cheng G, Ferrandino FJ, Fikrig E, , 2012. Horizontal and vertical transmission of West Nile virus genotype NY99 by Culex salinarius and genotypes NY99 and WN02 by Culex tarsalis . Am J Trop Med Hyg 86: 134139.[Crossref] [Google Scholar]
  70. Hayes CG, Baker RH, Baqar S, Ahmed T, , 1984. Genetic variation for West Nile virus susceptibility in Culex tritaeniorhynchus . Am J Trop Med Hyg 33: 715724. [Google Scholar]
  71. Baqar S, Curtis GH, Murphy JR, Watts DM, , 1993. Vertical transmission of West Nile virus by Culex and Aedes species mosquitoes. Am J Trop Med Hyg 48: 757762. [Google Scholar]
  72. Thiemann TC, Reisen WK, , 2012. Evaluating sampling method bias in Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae) bloodmeal identification studies. J Med Entomol 49: 143149.[Crossref] [Google Scholar]
  73. Kwan JL, Kluh S, Madon MB, Reisen WK, , 2010. West Nile virus emergence and persistence in Los Angeles, California, 2003–2008. Am J Trop Med Hyg 83: 400412.[Crossref] [Google Scholar]
  74. Wheeler SS, Barker CM, Fang Y, Armijos MV, Carroll BD, Husted S, Johnson WO, Reisen WK, , 2009. Differential impact of West Nile virus on California birds. Condor 111: 120.[Crossref] [Google Scholar]
  75. Reisen W, Brault AC, , 2007. West Nile virus in North America: perspectives on epidemiology and intervention. Pest Manag Sci 63: 641646.[Crossref] [Google Scholar]
  76. Brault AC, Langevin S, Bowen RA, Panella NA, Biggerstaff BJ, Miller BR, Komar N, , 2004. Differential virulence of West Nile strains for American Crows. Emerg Infect Dis 10: 21612168.[Crossref] [Google Scholar]
  77. Komar N, Langevin S, Hinten S, Nemeth NM, Edwards E, Hettler D, Davis BS, Bowen RA, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref] [Google Scholar]
  78. Witmer MC, Mountjoy DJ, Elliot L, Poole A, , 1997. Cedar waxwing (Bombycilla cedrorum). , ed. The Birds of North America Online. Ithaca, NY: Cornell Lab of Ornithology. [Google Scholar]
  79. Byrne K, Nichols RA, , 1999. Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82: 715.[Crossref] [Google Scholar]
  80. Nudelman S, Galun R, Kitron U, Spielman A, , 1988. Physiological characteristics of Culex pipiens populations in the Middle East. Med Vet Entomol 2: 161169.[Crossref] [Google Scholar]
  81. Villani F, Urbanelli S, Gad A, Nudelman S, Bullini L, , 1986. Electrophoretic variation of Culex pipiens from Egypt and Israel. Biol J Linn Soc Lond 29: 4962.[Crossref] [Google Scholar]
  82. Barr AR, , 1967. Occurrence and distribution of the Culex pipiens complex. Bull World Health Organ 37: 293296. [Google Scholar]
  83. Iltis WG, , 1966. Biosystematics of the Culex pipiens Complex in Northern California. Davis, CA: University of California-Davis. [Google Scholar]
  84. Spielman A, Wong J, , 1973. Environmental control of ovarian diapause in Culex pipiens . Ann Entomol Soc Am 66: 905907.[Crossref] [Google Scholar]
  85. Dohm DJ, Turell MJ, , 2001. Effect of incubation at overwintering temperatures on the replication of West Nile virus in New York Culex pipiens (Diptera: Culicidae). J Med Entomol 38: 462464.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 24 Apr 2013
  • Accepted : 10 Aug 2013
  • Published online : 04 Dec 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error