Volume 90, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Niyogi SK, , 2005. Shigellosis. J Microbiol 43: 133143. [Google Scholar]
  2. Patrick ME, Christiansen LE, Waino M, Ethelberg S, Madsen H, Wegener HC, , 2004. Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Appl Environ Microbiol 70: 74747480.[Crossref] [Google Scholar]
  3. von Seidlein L, Kim DR, Ali M, Lee H, Wang X, Thiem VD, Canh do G, Chaicumpa W, Agtini MD, Hossain A, Bhutta ZA, Mason C, Sethabutr O, Talukder K, Nair GB, Deen JL, Kotloff K, Clemens J, , 2006. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med 3: e353.[Crossref] [Google Scholar]
  4. Wang XY, Du L, Von Seidlein L, Xu ZY, Zhang YL, Hao ZY, Han OP, Ma JC, Lee HJ, Ali M, Han CQ, Xing ZC, Chen JC, Clemens J, , 2005. Occurrence of shigellosis in the young and elderly in rural China: results of a 12-month population-based surveillance study. Am J Trop Med Hyg 73: 416422. [Google Scholar]
  5. Wang XY, Tao F, Xiao D, Lee H, Deen J, Gong J, Zhao Y, Zhou W, Li W, Shen B, Song Y, Ma J, Li ZM, Wang Z, Su PY, Chang N, Xu JH, Ouyang PY, von Seidlein L, Xu ZY, Clemens JD, , 2006. Trend and disease burden of bacillary dysentery in China (1991–2000). Bull World Health Organ 84: 561568.[Crossref] [Google Scholar]
  6. Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM, , 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77: 651666. [Google Scholar]
  7. Guan P, Huang D, Guo J, Wang P, Zhou B, , 2008. Bacillary dysentery and meteorological factors in northeastern China: a historical review based on classification and regression trees. Jpn J Infect Dis 61: 356360. [Google Scholar]
  8. Kovats RS, Edwards SJ, Hajat S, Armstrong BG, Ebi KL, Menne B, , 2004. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiol Infect 132: 443453.[Crossref] [Google Scholar]
  9. Ma SL, Tang QL, Liu HW, He J, Gao SH, , 2012. Correlation analysis for the attack of bacillary dysentery and meteorological factors based on the Chinese medicine theory of Yunqi and the medical-meteorological forecast model. Chin J Integr Med 19: 182186.[Crossref] [Google Scholar]
  10. Singh RB, Hales S, de Wet N, Raj R, Hearnden M, Weinstein P, , 2001. The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environ Health Perspect 109: 155159.[Crossref] [Google Scholar]
  11. The Census Office of the National Bureau of Statistics of Population and Employment Statistics Division, 2010. Tabulation on the 2010 Population Census of the People's Republic of China. Available at: Accessed March 28, 2013. [Google Scholar]
  12. China Meteorological Data Sharing Service System, 2013. The Surface Meteorological Data. Available at: http://cdc.cma.gov.cn/home.do. Accessed February 1, 2013. [Google Scholar]
  13. Checkley W, Epstein LD, Gilman RH, Figueroa D, Cama RI, Patz JA, Black RE, , 2000. Effect of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 355: 442450. [Google Scholar]
  14. Kelly-Hope LA, Alonso WJ, Thiem VD, Anh DD, Canh do G, Lee H, Smith DL, Miller MA, , 2007. Geographical distribution and risk factors associated with enteric diseases in Vietnam. Am J Trop Med Hyg 76: 706712. [Google Scholar]
  15. Lake IR, Gillespie IA, Bentham G, Nichols GL, Lane C, Adak GK, Threlfall EJ, , 2009. A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol Infect 137: 15381547.[Crossref] [Google Scholar]
  16. Tam CC, Rodrigues LC, O'Brien SJ, Hajat S, , 2006. Temperature dependence of reported Campylobacter infection in England, 1989–1999. Epidemiol Infect 134: 119125.[Crossref] [Google Scholar]
  17. Thomas CJ, Davies G, Dunn CE, , 2004. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol 20: 216220.[Crossref] [Google Scholar]
  18. Ministry of Health of the People's Republic of China, 2006. Emergency Events and Regulation of the Notifiable Disease Surveillance System. Available at: http://www.gov.cn/zwgk/2006-09/08/content_382018.htm. Accessed February 1, 2013. [Google Scholar]
  19. Akanda AS, Jutla AS, Islam S, , 2009. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett 36: L19401.[Crossref] [Google Scholar]
  20. Akanda AS, Jutla AS, de Magny GC, Alam M, Siddique AK, Sack RB, Huq A, Colwell RR, Islam S, , 2011. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta. Water Resour Res 47: W00H07.[Crossref] [Google Scholar]
  21. Neimann J, Engberg J, Molbak K, Wegener HC, , 2003. A case-control study of risk factors for sporadic Campylobacter infections in Denmark. Epidemiol Infect 130: 353366.[Crossref] [Google Scholar]
  22. Zhang Y, Bi P, Hiller JE, Sun Y, Ryan P, , 2007. Climate variations and bacillary dysentery in northern and southern cities of China. J Infect 55: 194200.[Crossref] [Google Scholar]
  23. Granger CWJ, Swanson N, , 1996. Future development in the study of cointegrated variables. Oxf Bull Econ Stat 58: 537553.[Crossref] [Google Scholar]
  24. Wangdi K, Singhasivanon P, Silawan T, Lawpoolsri S, White NJ, Kaewkungwal J, , 2010. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Malar J 9: 251.[Crossref] [Google Scholar]
  25. Cornelsen L, Normand C, , 2012. Impact of the smoking ban on the volume of bar sales in Ireland: evidence from time series analysis. Health Econ 21: 551561.[Crossref] [Google Scholar]
  26. Liu X, Jiang B, Gu W, Liu Q, , 2011. Temporal trend and climate factors of hemorrhagic fever with renal syndrome epidemic in Shenyang City, China. BMC Infect Dis 11: 331.[Crossref] [Google Scholar]
  27. Chadsuthi S, Modchang C, Lenbury Y, Iamsirithaworn S, Triampo W, , 2012. Modeling seasonal leptospirosis transmission and its association with rainfall and temperature in Thailand using time–series and ARIMAX analyses. Asian Pac J Trop Med 5: 539546.[Crossref] [Google Scholar]
  28. Box GEP, Jenkins GM, , 1976. Time Series Analysis: Forecasting and Control. San Francisco, CA: Holden Day, 181218. [Google Scholar]
  29. Lee HS, Her M, Levine M, Moore GE, , 2012. Time series analysis of human and bovine brucellosis in South Korea from 2005 to 2010. Prev Vet Med 3296: 18. [Google Scholar]
  30. Zhang Y, Bi P, Hiller JE, , 2008. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models. Int J Biometeorol 52: 179187.[Crossref] [Google Scholar]
  31. Tiradoa MC, Clarkeb R, Jaykusc LA, McQuatters-Gollopd A, Franke JM, , 2010. Climate change and food safety: a review. Food Res Int 43: 17451765.[Crossref] [Google Scholar]
  32. Carcavallo RU, Curto de Casas S, , 1996. Some health impacts of global warming in South America: vector-borne diseases. J Epidemiol 6: S153S157.[Crossref] [Google Scholar]
  33. Asin S, Catala S, , 1995. Development of Trypanosoma cruzi in Triatoma infestans-influence of temperature and blood consumption. J Parasitol 81: 17.[Crossref] [Google Scholar]
  34. Hall GV, D'Souza RM, Kirk MD, , 2002. Foodborne disease in the new millennium: out of the frying pan and into the fire? Med J Aust 177: 614618. [Google Scholar]
  35. Lehane L, , 2000. Ciguatera update. Med J Aust 172: 176179. [Google Scholar]
  36. Ashbolt R, Givney R, Gregory JE, Hall G, Hundy R, Kirk M, McKay I, Meuleners L, Millard G, Raupach J, Roche P, Prasopa-Plaizier N, Sama MK, Stafford R, Tomaska N, Unicomb L, Williams C, OzFoodNet Working Group; , 2002. Enhancing foodborne disease surveillance across Australia in 2001: the OzFoodNet Working Group. Commun Dis Intell Q Rep 26: 375406. [Google Scholar]
  37. El Saadi O, Esterman A, Cameron S, Roder D, , 1995. Murray River water, raised cyanobacterial cell counts, and gastrointestinal and dermatological symptoms. Med J Aust 162: 122125. [Google Scholar]
  38. D'Souza RM, Becker NG, Hall G, Moodie KB, , 2004. Does ambient temperature affect foodborne disease? Epidemiology 15: 8692.[Crossref] [Google Scholar]
  39. Zhang Y, Bi P, Hiller JE, , 2008. Weather and the transmission of bacillary dysentery in Jinan, Northern China: a time-series analysis. Public Health Rep 123: 6166.[Crossref] [Google Scholar]
  40. Koelle K, Rodo X, Pascual M, Yunus M, Mostafa G, , 2005. Refractory periods and climate forcing in cholera dynamics. Nature 436: 696700.[Crossref] [Google Scholar]
  41. Weinstein P, Woodward A, , 2005. Ecology, Climate and Campylobacteriosis in New Zealand. Integration of Public Health with Adaptation to Climate Change. Leiden, The Netherlands, Taylor and Francis, 6071. [Google Scholar]
  42. Lei J, Xinyu L, Guirong L, Yuan L, , 2007. Analysis of the association between meteorological factors and incidence of dysentery in Beijing. Mod Prev Med 34: 24702471. [Google Scholar]
  43. Kolstad EW, Johansson KA, , 2011. Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea. Environ Health Perspect 119: 299305.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 16 Apr 2013
  • Accepted : 01 Jan 2014
  • Published online : 02 Apr 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error