Volume 90, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue is the most prevalent arthropod-borne virus, with at least 40% of the world's population at risk of infection each year. In Australia, dengue is not endemic, but viremic travelers trigger outbreaks involving hundreds of cases. We compared the susceptibility of mosquitoes from two geographically isolated populations to two strains of dengue virus serotype 2. We found, interestingly, that mosquitoes from a city with no history of dengue were more susceptible to virus than mosquitoes from an outbreak-prone region, particularly with respect to one dengue strain. These findings suggest recent evolution of population-based differences in vector competence or different historical origins. Future genomic comparisons of these populations could reveal the genetic basis of vector competence and the relative role of selection and stochastic processes in shaping their differences. Lastly, we show the novel finding of a correlation between midgut dengue titer and titer in tissues colonized after dissemination.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, Hunsperger E, Kroeger A, Margolis HS, Martinez E, Nathan MB, Pelegrino JL, Simmons C, Yoksan S, Peeling RW, , 2010. Dengue: a continuing global threat. Nat Rev Microbiol 8: S7S16.[Crossref] [Google Scholar]
  2. Kyle JL, Harris E, , 2008. Global spread and persistence of dengue. Annu Rev Microbiol 62: 7192.[Crossref] [Google Scholar]
  3. Ross TM, , 2010. Dengue virus. Clin Lab Med 30: 149160.[Crossref] [Google Scholar]
  4. Halstead SB, , 2008. Dengue virus-mosquito interactions. Annu Rev Entomol 53: 273291.[Crossref] [Google Scholar]
  5. Gubler DJ, , 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11: 480496. [Google Scholar]
  6. Gubler DJ, , 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100103.[Crossref] [Google Scholar]
  7. Holmes EC, Burch SS, , 2000. The causes and consequences of genetic variation in dengue virus. Trends Microbiol 8: 7477.[Crossref] [Google Scholar]
  8. Vasilakis N, Weaver SC, , 2008. The history and evolution of human dengue emergence. Adv Virus Res 72: 176.[Crossref] [Google Scholar]
  9. Chevillon C, Failloux AB, , 2003. Questions on viral population biology to complete dengue puzzle. Trends Microbiol 11: 415421.[Crossref] [Google Scholar]
  10. Holmes EC, , 2003. Patterns of intra- and interhost nonsynonymous variation reveal strong purifying selection in dengue virus. J Virol 77: 1129611298.[Crossref] [Google Scholar]
  11. Parameswaran P, Charlebois P, Tellez Y, Nunez A, Ryan EM, Malboeuf CM, Levin JZ, Lennon NJ, Balmaseda A, Harris E, Henn MR, , 2012. Genome-wide patterns of intrahuman dengue virus diversity reveal associations with viral phylogenetic clade and interhost diversity. J Virol 86: 85468558.[Crossref] [Google Scholar]
  12. Anderson JR, Rico-Hesse R, , 2006. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg 75: 886892. [Google Scholar]
  13. Armstrong PM, Rico-Hesse R, , 2001. Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector-Borne Zoonotic Dis 1: 159168.[Crossref] [Google Scholar]
  14. Armstrong PM, Rico-Hesse R, , 2003. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti . Am J Trop Med Hyg 68: 539544. [Google Scholar]
  15. Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW, , 2009. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9: 160.[Crossref] [Google Scholar]
  16. Bennett KE, Olson KE, Munoz MD, Fernandez-Salas I, Farfan-Ale JA, Higgs S, Black WC, Beaty BJ, , 2002. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg 67: 8592. [Google Scholar]
  17. Gubler DJ, Nalim S, Tan R, Saipan H, Suliantisaroso J, , 1979. Variation in susceptibility to oral infection with dengue viruses among geographic strains of Aedes aegypti . Am J Trop Med Hyg 28: 10451052. [Google Scholar]
  18. Vazeille-Falcoz M, Mousson L, Rodhain F, Chungue E, Failloux AB, , 1999. Variation in oral susceptibility to dengue type 2 virus of populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am J Trop Med Hyg 60: 292299. [Google Scholar]
  19. Rosen L, Roseboom LE, Gubler DJ, Lien JC, Chaniotis BN, , 1985. Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am J Trop Med Hyg 34: 603615. [Google Scholar]
  20. Hanna JN, Ritchie SA, , 2009. Outbreaks of dengue in North Queensland, 1990–2008. Commun Dis Intell 33: 3233. [Google Scholar]
  21. Van Den Hurk AF, Craig SB, Tulsiani SM, Jansen CC, , 2010. Emerging tropical diseases in Australia. Part 4. Mosquitoborne diseases. Ann Trop Med Parasitol 104: 623640.[Crossref] [Google Scholar]
  22. Queensland-Health, 2012. Dengue in North Queensland. Available at: http://www.health.qld.gov.au/dengue/outbreaks/previous.asp. Accessed July 20, 2013. [Google Scholar]
  23. Beebe NW, Whelan PI, van den Hurk A, Ritchie S, Cooper RD, , 2005. Genetic diversity of the dengue vector Aedes aegypti in Australia and implications for future surveillance and mainland incursion monitoring. Commun Dis Intell 29: 299304. [Google Scholar]
  24. Endersby NM, Hoffmann AA, White VL, Lowenstein S, Ritchie S, Johnson PH, Rapley LP, Ryan PA, Nam VS, Yen NT, Kittayapong P, Weeks AR, , 2009. Genetic structure of Aedes aegypti in Australia and Vietnam revealed by microsatellite and exon primed intron crossing markers suggests feasibility of local control options. J Med Entomol 46: 10741083.[Crossref] [Google Scholar]
  25. Knox TB, Kay BH, Hall RA, Ryan PA, , 2003. Enhanced vector competence of Aedes aegypti (Diptera: Culicidae) from the Torres Strait compared with mainland Australia for dengue 2 and 4 viruses. J Med Entomol 40: 950956.[Crossref] [Google Scholar]
  26. Beebe NW, Cooper RD, Mottram P, Sweeney AW, , 2009. Australia's dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3: e429.[Crossref] [Google Scholar]
  27. Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, McGraw EA, , 2009. Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia . PLoS Negl Trop Dis 3: e568.[Crossref] [Google Scholar]
  28. Frentiu FD, Robinson J, Young PR, McGraw EA, O'Neill SL, , 2010. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level. PLoS One 5: e13398.[Crossref] [Google Scholar]
  29. Warrilow D, Northill JA, Pyke A, Smith GA, , 2002. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes. J Med Virol 66: 524528.[Crossref] [Google Scholar]
  30. Kien DTH, Tuan TV, Hanh TNT, Chau TNB, Huy HLA, Wills BA, Simmons CP, , 2011. Validation of an internally controlled one-step real-time multiplex RT-PCR assay for the detection and quantitation of dengue virus RNA in plasma. J Med Virol 177: 168173. [Google Scholar]
  31. Lambrechts L, Scott TW, , 2009. Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc Biol Sci 276: 13691378.[Crossref] [Google Scholar]
  32. Xi Z, Ramirez JL, Dimopoulos G, , 2008. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4: e1000098.[Crossref] [Google Scholar]
  33. Ye YH, Chenoweth SF, McGraw EA, , 2009. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster . PLoS Pathog 5: e1000385.[Crossref] [Google Scholar]
  34. Yoon IK, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJ, Fansiri T, Jones JW, Morrison AC, Jarman RG, Nisalak A, Mammen MP, Jr Thammapalo S, Srikiatkhachorn A, Green S, Libraty DH, Gibbons RV, Endy T, Pimgate C, Scott TW, , 2012. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Neglect Trop Dis 6: e1730.[Crossref] [Google Scholar]
  35. Neff JM, Morris L, Gonzalez R, Coleman PH, Lyss SB, Negron H, , 1967. Dengue fever in a Puerto Rican community. Am J Epidemiol 86: 162184.[Crossref] [Google Scholar]
  36. Halstead SB, Nimmannitta S, Margiotta MR, , 1969. Dengue and Chikungunya virus infection in man in Thailand, 1962–1964: II. Observations on disease in outpatients. Am J Trop Med Hyg 18: 972983. [Google Scholar]
  37. Failloux AB, Darius H, Pasteur N, , 1995. Genetic differentiation of Aedes aegypti, the vector of dengue virus in French Polynesia. J Am Mosq Control Assoc 11: 457462. [Google Scholar]
  38. Huber K, Loan LL, Chantha N, Failloux AB, , 2004. Human transportation influences Aedes aegypti gene flow in Southeast Asia. Acta Trop 90: 2329.[Crossref] [Google Scholar]
  39. Paupy C, Vazeille-Falcoz M, Mousson L, Rodhain F, Failloux AB, , 2000. Aedes aegypti in Tahiti and Moorea (French Polynesia): isoenzyme differentiation in the mosquito population according to human population density. Am J Trop Med Hyg 62: 217224. [Google Scholar]
  40. Bosio CF, Beaty BJ, Black WC, 4th, 1998. Quantitative genetics of vector competence for dengue-2 virus in Aedes aegypti . Am J Trop Med Hyg 59: 965970. [Google Scholar]
  41. Forrester NL, Guerbois M, Seymour RL, Spratt H, Weaver SC, , 2012. Vector-borne transmission imposes a severe bottleneck on an RNA virus population. PLoS Pathog 8: e1002897.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 09 Apr 2013
  • Accepted : 29 Oct 2013
  • Published online : 05 Mar 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error