Volume 90, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Lyme disease ( infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Johnson RC, Schmid GP, Hyde FW, Steigerwalt AG, Brenner DJ, , 1984. Borrelia burgdorferi sp. nov.: etiological agent of Lyme disease. Int J Syst Bacteriol 34: 496497.[Crossref] [Google Scholar]
  2. Steere AC, Malawista SE, Snydman DR, Shope RE, Andiman WA, Ross MR, Steele FM, , 1977. Lyme arthritis: an epidemic of oligoarticular arthritis in children and adults in three Connecticut communities. Arthritis Rheum 20: 717.[Crossref] [Google Scholar]
  3. Bacon RM, Kugeler KJ, Mead PS, , 2008. Surveillance for Lyme disease–United States, 1992–2006. MMWR Surveill Summ 57: 19. [Google Scholar]
  4. Fish D, Ginsberg HS, , 1993. Population ecology of Ixodes dammini . , ed. Ecology and Environmental Management of Lyme disease. New Brunswick, NJ: Rutgers University Press, 2542. [Google Scholar]
  5. Barbour AG, Fish D, , 1993. The biological and social phenomenon of Lyme-disease. Science 260: 16101616.[Crossref] [Google Scholar]
  6. Ogden NH, Lindsay LR, Beauchamp G, Charron D, Maarouf A, O'Callaghan CJ, Waltner-Toews D, Barker IK, , 2004. Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (Acari: Ixodidae) in the laboratory and field. J Med Entomol 41: 622633.[Crossref] [Google Scholar]
  7. Peavey CA, Lane RS, , 1996. Field and laboratory studies on the timing of oviposition and hatching of the western black-legged tick, Ixodes pacificus (Acari: Ixodidae). Exp Appl Acarol 20: 695711.[Crossref] [Google Scholar]
  8. Randolph SE, Green RM, Hoodless AN, Peacey MF, , 2002. An empirical quantitative framework for the seasonal population dynamics of the tick Ixodes ricinus . Int J Parasitol 32: 979989.[Crossref] [Google Scholar]
  9. Randolph SE, , 2004. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129: S37S65.[Crossref] [Google Scholar]
  10. Vail SG, Smith G, , 1998. Air temperature and relative humidity effects on behavioral activity of blacklegged tick (Acari: Ixodidae) nymphs in New Jersey. J Med Entomol 35: 10251028.[Crossref] [Google Scholar]
  11. Vail SC, Smith G, , 2002. Vertical movement and posture of blacklegged tick (Acari: Ixodidae) nymphs as a function of temperature and relative humidity in laboratory experiments. J Med Entomol 39: 842846.[Crossref] [Google Scholar]
  12. Schulze TL, Jordan RA, , 2003. Meteorologically mediated diurnal questing of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J Med Entomol 40: 395402.[Crossref] [Google Scholar]
  13. Perret JL, Guerin PM, Diehl PA, Vlimant M, Gern L, , 2003. Darkness induces mobility, and saturation deficit limits questing duration, in the tick Ixodes ricinus . J Exp Biol 206: 18091815.[Crossref] [Google Scholar]
  14. Fish D, , 1995. Environmental risk and prevention of Lyme-disease. Am J Med 98: S2S9.[Crossref] [Google Scholar]
  15. Hayes EB, Piesman J, , 2003. Current concepts—How can we prevent Lyme disease? N Engl J Med 348: 24242430.[Crossref] [Google Scholar]
  16. Piesman J, Eisen L, , 2008. Prevention of tick-borne diseases. Annu Rev Entomol 53: 323343.[Crossref] [Google Scholar]
  17. Piesman J, , 2006. Strategies for reducing the risk of Lyme borreliosis in North America. Int J Med Microbiol 296 (Suppl 40): 1722.[Crossref] [Google Scholar]
  18. Schulze TL, Jordan RA, Hung RW, Taylor RC, Markowski D, Chomsky MS, , 2001. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidade) nymphs. J Med Entomol 38: 344346.[Crossref] [Google Scholar]
  19. Rand PW, Lacombe EH, Elias SP, Lubelczyk CB, St Amand T, Smith RP, , 2010. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J Med Entomol 47: 695698.[Crossref] [Google Scholar]
  20. Schulze TL, Jordan RA, Hung RW, Krivenko AJ, Jr Schulze JJ, Jordan TM, , 2001. Effects of an application of granular carbaryl on nontarget forest floor arthropods. J Econ Entomol 94: 123128.[Crossref] [Google Scholar]
  21. Gould LH, Nelson RS, Griffith KS, Hayes EB, Piesman J, Mead PS, Cartter ML, , 2008. Knowledge, attitudes, and behaviors regarding Lyme disease prevention among Connecticut residents, 1999–2004. Vector Borne Zoonotic Dis 8: 769776.[Crossref] [Google Scholar]
  22. Dolan MC, Jordan RA, Schulze TL, Schulze CJ, Manning MC, Ruffolo D, Schmidt JP, Piesman J, Karchesy JJ, , 2009. Ability of two natural products, nootkatone and carvacrol, to suppress Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in a Lyme disease endemic area of New Jersey. J Econ Entomol 102: 23162324.[Crossref] [Google Scholar]
  23. Jordan RA, Dolan MC, Piesman J, Schulze TL, , 2011. Suppression of host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs after dual applications of plant-derived acaricides in New Jersey. J Econ Entomol 104: 659664.[Crossref] [Google Scholar]
  24. Connally NP, Durante AJ, Yousey-Hindes KM, Meek JI, Nelson RS, Heimer R, , 2009. Peridomestic Lyme disease prevention: results of a population-based case-control study. Am J Prev Med 37: 201206.[Crossref] [Google Scholar]
  25. Steere AC, Hutchinson GJ, Rahn DW, Sigal LH, Craft JE, DeSanna ET, Malawista SE, , 1983. Treatment of the early manifestations of Lyme disease. Ann Intern Med 99: 2226.[Crossref] [Google Scholar]
  26. Wormser GP, , 2006. Clinical practice. Early Lyme disease. N Engl J Med 354: 27942801.[Crossref] [Google Scholar]
  27. Dobson ADM, Randolph SE, , 2011. Modelling the effects of recent changes in climate, host density and acaricide treatments on population dynamics of Ixodes ricinus in the UK. J Appl Ecol 48: 10291037.[Crossref] [Google Scholar]
  28. Hales S, Weinstein P, Souares Y, Woodward A, , 1999. El Nino and the dynamics of vectorborne disease transmission. Environ Health Perspect 107: 99102. [Google Scholar]
  29. Hoshen MB, Morse AP, , 2004. A weather-driven model of malaria transmission. Malar J 3: 32.[Crossref] [Google Scholar]
  30. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P, , 2006. Seasonality and the dynamics of infectious diseases. Ecol Lett 9: 467484.[Crossref] [Google Scholar]
  31. Subak S, , 2003. Effects of climate on variability in Lyme disease incidence in the northeastern United States. Am J Epidemiol 157: 531538.[Crossref] [Google Scholar]
  32. Centers for Disease Control, Prevention, 2009. Summary of notifiable diseases: United States, 2007. MMWR 56: 194. [Google Scholar]
  33. Centers for Disease Control, Prevention, 1997. Case definitions for infectious conditions under public health surveillance. MMWR Recomm Rep 46: 155. [Google Scholar]
  34. Xia YL, Mitchell K, Ek M, Sheffield J, Cosgrove B, Wood E, Luo LF, Alonge C, Wei HL, Meng J, Livneh B, Lettenmaier D, Koren V, Duan QY, Mo K, Fan Y, Mocko D, , 2012. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J Geophys Res, D, Atmospheres 117: doi:10.1029/2011JD016048. [Google Scholar]
  35. Cosgrove BA, Lohmann D, Mitchell KE, Houser PR, Wood EF, Schaake JC, Robock A, Marshall C, Sheffield J, Duan QY, Luo LF, Higgins RW, Pinker RT, Tarpley JD, Meng J, , 2003. Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project. J Geophys Res, D, Atmospheres 108: doi:10.1029/2003JD003823. [Google Scholar]
  36. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan QY, Luo LF, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA, , 2004. The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res, D, Atmospheres 108: doi:10.1029/2002JD003118. [Google Scholar]
  37. Mesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W, , 2006. North American regional reanalysis. Bull Am Meteorol Soc 87: 343360.[Crossref] [Google Scholar]
  38. Eisen RJ, Eisen L, Lane RS, , 2006. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Am J Trop Med Hyg 74: 632640. [Google Scholar]
  39. Eisen RJ, Eisen L, Girard YA, Fedorova N, Mun J, Slikas B, Leonhard S, Kitron U, Lane RS, , 2010. A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor. Ticks Tick Borne Dis 1: 3543.[Crossref] [Google Scholar]
  40. Lumley T, , 2009. Leaps: regression subset selection (using Fortran code by Alan Miller). R package version 2.9. Available at: http://CRAN.R-project.org/package=leaps. Accessed July 2013.
  41. Bates D, Maechler M, Bolker B, Walker S, , 2013. lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-5. Available at: http://CRAN.R-project.org/package=lme4. Accessed July 2013.
  42. Lindsay LR, Barker IK, Surgeoner GA, Mcewen SA, Gillespie TJ, Robinson JT, , 1995. Survival and development of Ixodes-scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J Med Entomol 32: 143152.[Crossref] [Google Scholar]
  43. Eisen L, Eisen RJ, Lane RS, , 2002. Seasonal activity patterns of Ixodes pacificus nymphs in relation to climatic conditions. Med Vet Entomol 16: 235244.[Crossref] [Google Scholar]
  44. Gray JS, , 2002. Biology of Ixodes species ticks in relation to tick-borne zoonoses. Wien Klin Wochenschr 114: 473478. [Google Scholar]
  45. Randolph SE, , 2008. Dynamics of tick-borne disease systems: minor role of recent climate change. Revue Scientifique Et Technique-Office International Des Epizooties 27: 367381.[Crossref] [Google Scholar]
  46. Randolph SE, , 1997. Abiotic and biotic determinants of the seasonal dynamics of the tick Rhipicephalus appendiculatus in South Africa. Med Vet Entomol 11: 2537.[Crossref] [Google Scholar]
  47. Branagan D, , 1973. Observations on the development and survival of the ixodid tick Rhipicephalus appendiculatus Neumann, 1901 under quasi-natural conditions in Kenya. Trop Anim Health Prod 5: 153165.[Crossref] [Google Scholar]
  48. Gatewood AG, Liebman KA, Vourc'h G, Bunikis J, Hamer SA, Cortinas R, Melton F, Cislo P, Kitron U, Tsao J, Barbour AG, Fish D, Diuk-Wasser MA, , 2009. Climate and tick seasonality are predictors of Borrelia burgdorferi genotype distribution. Appl Environ Microbiol 75: 24762483.[Crossref] [Google Scholar]
  49. Dobson ADM, Finnie TJR, Randolph SE, , 2011. A modified matrix model to describe the seasonal population ecology of the European tick Ixodes ricinus . J Appl Ecol 48: 10171028.[Crossref] [Google Scholar]
  50. Gray JS, , 2008. Ixodes ricinus seasonal activity: implications of global warming indicated by revisiting tick and weather data. Int J Med Microbiol 298: 1924.[Crossref] [Google Scholar]
  51. Perret JL, Guigoz E, Rais O, Gern L, , 2000. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol Res 86: 554557.[Crossref] [Google Scholar]
  52. Walker AR, , 2001. Age structure of a population of Ixodes ricinus (Acari: Ixodidae) in relation to its seasonal questing. Bull Entomol Res 91: 6978. [Google Scholar]
  53. Hancock PA, Brackley R, Palmer SC, , 2011. Modelling the effect of temperature variation on the seasonal dynamics of Ixodes ricinus tick populations. Int J Parasitol 41: 513522.[Crossref] [Google Scholar]
  54. Padgett KA, Lane RS, , 2001. Life cycle of Ixodes pacificus (Acari: Ixodidae): timing of developmental processes under field and laboratory conditions. J Med Entomol 38: 684693.[Crossref] [Google Scholar]
  55. Gray JS, , 1982. The development and questing activity of Ixodes-ricinus (L) (Acari, Ixodidae) under field conditions in Ireland. Bull Entomol Res 72: 263270.[Crossref] [Google Scholar]
  56. Belozerov VN, Obenchain FD, Galun R, , 1982. Diapause and biological rhythms in ticks. , eds. Physiology of Ticks. Oxford, UK: Pergamon Press, 469500.[Crossref] [Google Scholar]
  57. Belozerov VN, Naumov RL, , 2002. Nymphal diapause and its photoperiodic control in the tick Ixodes scapularis (Acari: Ixodidae). Folia Parasitol (Praha) 49: 314318.[Crossref] [Google Scholar]
  58. Randolph SE, Storey K, , 1999. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): implications for parasite transmission. J Med Entomol 36: 741748.[Crossref] [Google Scholar]
  59. Fisman DN, , 2007. Seasonality of infectious diseases. Annu Rev Public Health 28: 127143.[Crossref] [Google Scholar]
  60. Brownstein JS, Holford TR, Fish D, , 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 11521157.[Crossref] [Google Scholar]
  61. Ogden NH, Bigras-Poulin M, Hanincova K, Maarouf A, O'Callaghan CJ, Kurtenbach K, , 2008. Projected effects of climate change on tick phenology and fitness of pathogens transmitted by the North American tick Ixodes scapularis . J Theor Biol 254: 621632.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 05 Apr 2013
  • Accepted : 05 Aug 2013
  • Published online : 05 Mar 2014

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error