Volume 89, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The invasive dengue vector has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of . We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of and , respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Tabachnick WJ, , 1991. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 37: 1426.[Crossref] [Google Scholar]
  2. Josseran L, Paquet C, Zehgnoun A, Caillere N, Le Tertre A, Solet JL, Ledrans M, , 2006. Chikungunya disease outbreak, Reunion Island. Emerg Infect Dis 12: 19941995.[Crossref] [Google Scholar]
  3. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A, Chikv Study Group; , 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846.[Crossref] [Google Scholar]
  4. Pinheiro FP, Corber SJ, , 1997. Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat Q 50: 161169. [Google Scholar]
  5. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA, , 2001. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109 (Suppl 2): 223233.[Crossref] [Google Scholar]
  6. Anderson M, , 2009. Dengue Virus Returns to Florida After More Than 50 Years, UF Researchers Say. Available at: news.ufl.edu/2009/11/23/dengue/. Accessed December 20, 2011. [Google Scholar]
  7. Merrill SA, Ramberg FB, Hagedorn HH, , 2005. Phylogeography and population structure of Aedes aegypti in Arizona. Am J Trop Med Hyg 72: 304310. [Google Scholar]
  8. Soper FL, , 1965. The 1964 status of Aedes aegypti eradication and yellow fever in the Americas. Am J Trop Med Hyg 14: 887891. [Google Scholar]
  9. Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A, Hartman S, Davis CT, Coffey L, Mathiot CC, Tesh RB, Weaver SC, , 2004. Dengue emergence and adaptation to peridomestic mosquitoes. Emerg Infect Dis 10: 17901796.[Crossref] [Google Scholar]
  10. Harrington LC, Edman JD, Scott TW, , 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38: 411422.[Crossref] [Google Scholar]
  11. Duenas JC, Llinas GA, Panzetia-Dutari GM, Gardenal CN, , 2009. Two different routes of colonization of Aedes aegypti in Argentina from neighboring countries. J Med Entomol 46: 13441354.[Crossref] [Google Scholar]
  12. Gill J, Stark LM, Clark GG, , 2000. Dengue surveillance in Florida, 1997–98. Emerg Infect Dis 6: 3035. [Google Scholar]
  13. O'Meara GF, Evans LF, Gettman AD, Cuda JP, , 1995. Spread of Aedes albopictus and decline of Aedes aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32: 554562.[Crossref] [Google Scholar]
  14. Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, , 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 8689.[Crossref] [Google Scholar]
  15. Goncalves da Silva A, Cunha IC, Santos WS, Luz SL, Ribolla PE, Abad-Franch F, , 2012. Gene flow networks among American Aedes aegypti populations. Evol Appl 5: 664676.[Crossref] [Google Scholar]
  16. Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG, , 2001. The population biology of invasive species. Annu Rev Ecol Syst 32: 305332.[Crossref] [Google Scholar]
  17. Lee CE, , 2002. Evolutionary genetics of invasive species. Trends Ecol Evol 17: 386391.[Crossref] [Google Scholar]
  18. Kolar CS, Lodge DM, , 2001. Progress in invasion biology: predicting invaders. Trends Ecol Evol 16: 199204.[Crossref] [Google Scholar]
  19. Kolbe JJ, Glor RE, Rodriguez Schettino L, Lara AC, Larson A, Losos JB, , 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177181.[Crossref] [Google Scholar]
  20. Price TD, Sol D, , 2008. Introduction: genetics of colonizing species. Am Nat 172 (Suppl 1): S1S3.[Crossref] [Google Scholar]
  21. Yakob L, Alphey L, Bonsall MB, , 2008. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol 45: 12581265.[Crossref] [Google Scholar]
  22. Huber K, Mousson L, Rodhain F, Failloux AB, , 2001. Isolation and variability of polymorphic microsatellite loci in Aedes aegypti, the vector of dengue viruses. Mol Ecol Notes 1: 219222.[Crossref] [Google Scholar]
  23. Birungi J, Munstermann LE, , 2002. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am 95: 125132.[Crossref] [Google Scholar]
  24. Gorrochotegui-Escalante N, Munoz ML, Fernandez-Salas I, Beaty BJ, Black WC, , 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62: 200209. [Google Scholar]
  25. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW, , 2005. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72: 434442. [Google Scholar]
  26. Costa-da-Silva AL, Capurro ML, Bracco JE, , 2005. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz 100: 539544.[Crossref] [Google Scholar]
  27. Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martínez JA, Pernalete M, Villegas P, Montoya A, , 2006. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 101: 625633.[Crossref] [Google Scholar]
  28. Paduan KDS, Ribolla PEM, , 2008. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol 45: 5967.[Crossref] [Google Scholar]
  29. Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM, , 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz 102: 573580.[Crossref] [Google Scholar]
  30. Moore M, Sylla M, Goss L, Burugu MW, Sang R, Kamau LW, Kenya EU, Bosio C, de Lourdes Munoz M, Sharakova M, , 2013. Dual African origins of global Aedes aegypti sl populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7: e2175.[Crossref] [Google Scholar]
  31. Szalanski AL, Owens CB, Lewter JA, Broce AB, , 2006. Genetic structure of Aedes vexans (Diptera: Culicidae) populations from central United States based on mitochondrial ND5 sequences. Ann Entomol Soc Am 99: 157163.[Crossref] [Google Scholar]
  32. Venkatesan M, Westbrook CJ, Hauer MC, Rasgon JL, , 2007. Evidence for a population expansion in the West Nile virus vector Culex tarsalis . Mol Biol Evol 24: 12081218.[Crossref] [Google Scholar]
  33. Simard F, Licht M, Besansky NJ, Lehmann T, , 2007. Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses. Infect Genet Evol 7: 285292.[Crossref] [Google Scholar]
  34. Galtier N, Gouy M, Gautier C, , 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12: 543548. [Google Scholar]
  35. Librado P, Rozas J, , 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 14511452.[Crossref] [Google Scholar]
  36. Excoffier L, Laval G, Schneider S, , 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  37. Slatkin M, , 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264279.[Crossref] [Google Scholar]
  38. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595. [Google Scholar]
  39. Simonsen KL, Churchill GA, Aquadro CF, , 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413429. [Google Scholar]
  40. Nielsen R, , 2001. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 86: 641647.[Crossref] [Google Scholar]
  41. Kumar S, Tamura K, Nei M, , 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150163.[Crossref] [Google Scholar]
  42. Legendre P, Fortin M-J, , 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10: 831844.[Crossref] [Google Scholar]
  43. Manly BFJ, , 1997. RT, A Program for Randomization Testing. Dunedin, New Zealand: University of Otago, Center for Applications of Statistics and Mathematics. [Google Scholar]
  44. Fortin M-J, Payett S, , 2002. How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience 9: 213218.[Crossref] [Google Scholar]
  45. Dupanloup I, Schneider S, Excoffier L, , 2002. A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 25712581.[Crossref] [Google Scholar]
  46. Huber K, Loan LL, Chantha N, Failloux AB, , 2004. Human transportation influences Aedes aegypti gene flow in Southeast Asia. Acta Trop 90: 2329.[Crossref] [Google Scholar]
  47. Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC, IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66: 213222. [Google Scholar]
  48. Paupy C, Chantha N, Reynes JM, Failloux AB, , 2005. Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity (Edinb) 95: 144147.[Crossref] [Google Scholar]
  49. Hemme RR, Thomas CL, Chadee DD, Severson DW, , 2010. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti . PLoS Negl Trop Dis 4: e634.[Crossref] [Google Scholar]
  50. Haag CR, Riek M, Hottinger JW, Pajunen VI, Ebert D, , 2005. Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age. Genetics 170: 18091820.[Crossref] [Google Scholar]
  51. Premoli AC, Chischilly S, Mitton JB, , 1994. Levels of genetic variation captured by four descendant populations of Pinyon pine (Pinus edulis Engelm.). Biodivers Conserv 3: 331340.[Crossref] [Google Scholar]
  52. Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IP, , 2002. Genetic consequences of sequential founder events by an island-colonizing bird. Proc Natl Acad Sci USA 99: 81278132.[Crossref] [Google Scholar]
  53. Abdelkrim J, Pascal M, Samadi S, , 2005. Island colonization and founder effects: the invasion of the Guadeloupe islands by ship rats (Rattus rattus). Mol Ecol 14: 29232931.[Crossref] [Google Scholar]
  54. Lima RS, Jr Scarpassa VM, , 2009. Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol 32: 414422.[Crossref] [Google Scholar]
  55. Fonseca DM, Widdel AK, Hutchinson M, Spichiger SE, Kramer LD, , 2010. Fine-scale spatial and temporal population genetics of Aedes japonicus, a new US mosquito, reveal multiple introductions. Mol Ecol 19: 15591572.[Crossref] [Google Scholar]
  56. Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C, , 2009. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 10: 11.[Crossref] [Google Scholar]
  57. Black WC, Bernhardt S, , 2009. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol 18: 705713.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 24 Feb 2013
  • Accepted : 02 Jul 2013
  • Published online : 04 Sep 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error