1921
Volume 89, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Microsatellite markers were used to genetically characterize 19 complex populations from California. Two populations showed characteristics of earlier genetic bottlenecks. The overall F value and a neighbor-joining tree suggested moderate amounts of genetic differentiation. Analyses using Structure indicated = 4 genetic clusters: form pipiens L., Say, form molestus Forskäl, and a group of genetically similar individuals of hybrid origin. A Discriminant Analysis of Principal Components indicated that the latter group is a mixture of the other three taxa, with form pipiens and form molestus contributing somewhat more ancestry than . Characterization of 56 morphologically autogenous individuals classified most as form molestus, and none as form pipiens or . Comparison of California microsatellite data with those of Coquillett from Japan indicated the latter does not contribute significantly to genotypes in California.

[open-access] This is an Open Access article distributed under the terms of the American Society of Tropical Medicine and Hygiene's Re-use License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.13-0040
2013-12-04
2019-01-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/89/6/1154.html?itemId=/content/journals/10.4269/ajtmh.13-0040&mimeType=html&fmt=ahah

References

  1. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, McMillen L, Unnasch EA, Unnasch TR, , 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7: 365386.[Crossref] [Google Scholar]
  2. Mitchell CJ, Francy DB, Monath TP, Monath TP, , 1980. Arthropod vectors. , ed. St. Louis Encephalitis. Washington, DC: American Public Health Association, 313379. [Google Scholar]
  3. Nasci RS, Savage HM, White DJ, Miller JR, Cropp BC, Godsey MS, Kerst AJ, Bennet P, Gottfried K, Lanciotti RS, , 2000. West Nile virus in overwintering Culex mosquitoes, New York City, 2000. Emerg Infect Dis 7: 742744.[Crossref] [Google Scholar]
  4. McAbee RD, Kang K-D, Stanich MA, Christiansen JA, Wheelock CE, Inman AD, Hammock BD, Cornel AJ, , 2004. Pyrethroid tolerance in Culex pipiens pipiens var molestus from Marin County, California. Pest Manag Sci 60: 359368.[Crossref] [Google Scholar]
  5. Reisen WK, Barker CM, Fang Y, Martinez VM, , 2008. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? J Med Entomol 45: 11261138.[Crossref] [Google Scholar]
  6. Vaidyanathan R, Scott TW, , 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.[Crossref] [Google Scholar]
  7. Barr AR, , 1957. The distribution of Culex p. pipiens and C. p. quinquefasciatus in North America. Am J Trop Med Hyg 6: 153165. [Google Scholar]
  8. Kothera L, Zimmerman EM, Richards CM, Savage HM, , 2009. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a north-south transect in the central United States. J Med Entomol 46: 236248.[Crossref] [Google Scholar]
  9. Edillo F, Kiszewski A, Manjourides J, Pagano M, Hutchinson M, Kyle A, Arias J, Gaines D, Lampman R, Novak R, Foppa I, Lubelcyzk C, Smith R, Moncayo A, Spielman A, The Culex pipiens Working Group, , 2009. Effects of latitude and longitude on the population structure of Culex pipiens s.l., vectors of West Nile virus in North America. Am J Trop Med Hyg 81: 842848.[Crossref] [Google Scholar]
  10. Huang S, Molaei G, Andreadis TG, , 2008. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 79: 518527. [Google Scholar]
  11. Huang S, Molaei M, Andreadis TG, , 2011. Reexamination of Culex pipiens hybridization zone in the eastern United States by ribosomal DNA-based single nucleotide polymorphism markers. Am J Trop Med Hyg 85: 434441.[Crossref] [Google Scholar]
  12. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, , 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671. [Google Scholar]
  13. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, , 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref] [Google Scholar]
  14. Huang S, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, , 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref] [Google Scholar]
  15. Savage HM, Kothera L, , 2012. The Culex pipiens complex in the Mississippi River Basin: identification, distribution and bloodmeal hosts. J Am Mosquito Contr 28: 9399.[Crossref] [Google Scholar]
  16. Tabachnick WJ, Powell JR, , 1983. Genetic analysis of Culex pipiens populations in the central valley of California. Ann Entomol Soc Am 76: 715720.[Crossref] [Google Scholar]
  17. Urbanelli S, Silvestrini F, Reisen WK, De Vito E, Bullini L, , 1997. Californian hybrid zone between Culex pipiens pipiens and Cx. p. quinquefasciatus revisited (Diptera: Culicidae). J Med Entomol 34: 116127.[Crossref] [Google Scholar]
  18. Cornel AJ, McAbee RD, Rasgon J, Stanich M, Scott TW, Coetzee M, , 2003. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera: Culicidae) in California and South Africa. J Med Entomol 40: 3651.[Crossref] [Google Scholar]
  19. McAbee RD, Kang K-D, Stanich MA, Christiansen JA, Wheelock CE, Inman AD, Hammock BD, Cornel AJ, , 2004. Pyrethroid tolerance in Culex pipiens pipiens var molestus from Marin County, California. Pest Manag Sci 60: 359368.[Crossref] [Google Scholar]
  20. Strickman D, Fonseca DM, , 2012. Autogeny in Culex pipiens complex mosquitoes from the San Francisco Bay area. Am J Trop Med Hyg 87: 719726.[Crossref] [Google Scholar]
  21. Reiter P, , 1983. A portable, battery-operated trap for collecting gravid Culex mosquitoes. Mosq News 43: 496498. [Google Scholar]
  22. Kawai S, , 1969. Studies on the follicular development and feeding activity of the females of Culex tritaeniorhynchus with special reference to those of autumn. Trop Med 11: 145169. [Google Scholar]
  23. Clements AN, Boocock MR, , 1984. Ovarian development in mosquitoes: stages of growth and arrest, and follicular resorption. Physiol Entomol 9: 18.[Crossref] [Google Scholar]
  24. Darsie RF, Jr Ward RA, , 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida. [Google Scholar]
  25. Kothera L, Godsey MS, Doyle MS, Savage HM, , 2012. Characterization of Culex pipiens complex (Diptera: Culicidae) populations in Colorado, USA using microsatellites. PLoS ONE 7: e47602.[Crossref] [Google Scholar]
  26. Glaubitz JC, , 2004. CONVERT: a user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4: 309310.[Crossref] [Google Scholar]
  27. Excoffier L, Laval G, Schneider S, , 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  28. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  29. Goudet J, , 1995. FSTAT (Version 1.2): a computer program to calculate F-Statistics. J Hered 86: 485486.[Crossref] [Google Scholar]
  30. Nei M, , 1987. Molecular Evolutionary Genetics. New York, NY: Columbia University Press. [Google Scholar]
  31. Guo SW, Thompson EA, , 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361372.[Crossref] [Google Scholar]
  32. Weir BS, Cockerham CC, , 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 13581370.[Crossref] [Google Scholar]
  33. Piry S, Luikart G, Cornuet JM, , 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 502503.[Crossref] [Google Scholar]
  34. Felsenstein J, , 1993. PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Seattle, WA: Department of Genetics, University of Washington. [Google Scholar]
  35. Cavalli-Sforza LL, Edwards AW, , 1967. Phylogenetic analysis: models and estimation procedures. Evolution 32: 550570.[Crossref] [Google Scholar]
  36. Jakobsson M, Rosenberg NA, , 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 18011806.[Crossref] [Google Scholar]
  37. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.[Crossref] [Google Scholar]
  38. Rosenberg NA, , 2004. Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4: 137138.[Crossref] [Google Scholar]
  39. Carpenter SJ, LaCasse WJ, , 1955. Mosquitoes of North America (North of Mexico). Berkeley and Los Angeles, CA: University of California Press. [Google Scholar]
  40. Raymond M, Rousset F, , 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86: 248249.[Crossref] [Google Scholar]
  41. Rousset F, , 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8: 103106.[Crossref] [Google Scholar]
  42. Jombart T, Devillard S, Dufour AB, Pontier D, , 2008. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101: 92103.[Crossref] [Google Scholar]
  43. Jombart T, Devillard SD, Balloux F, , 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11: 94.[Crossref] [Google Scholar]
  44. Hartl DL, Clark AG, , 1997. Principles of Population Genetics. Sunderland, MA: Sinauer. [Google Scholar]
  45. Kimmel M, Chakraborty R, King JP, Bamshad M, Watkins WS, Jorde LB, , 1998. Signatures of population expansion in microsatellite repeat data. Genetics 148: 19211930. [Google Scholar]
  46. Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ, , 2012. Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21: 34033418.[Crossref] [Google Scholar]
  47. Cartaxo MF, Ayresa CF, Weetman D, , 2011. Loss of genetic diversity in Culex quinquefasciatus targeted by a lymphatic filariasis vector control program in Recife, Brazil. Trans R Soc Trop Med Hyg 105: 491499.[Crossref] [Google Scholar]
  48. Kothera L, Godsey M, Mutebi J-P, Savage HM, , 2010. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J Med Entomol 47: 805813. [Google Scholar]
  49. Kothera L, Godsey M, Mutebi J-P, Savage HM, , 2012. A comparison of above-ground and below-ground populations of Culex pipiens pipiens in Chicago, Illinois, and New York City, New York, using 2 microsatellite assays. J Am Mosquito Contr 28: 106112.[Crossref] [Google Scholar]
  50. Nelms BM, Macedo PA, Kothera L, Savage HM, Reisen WK, , 2013. Overwintering biology of Culex mosquitoes (Diptera: Culicidae) in the Sacramento Valley, California. J Med Entomol 50: 773790.[Crossref] [Google Scholar]
  51. Molaei G, Cummings RF, Su T, Armstrong PM, Williams GA, Cheng M-L, Webb J-P, Andreadis TG, , 2010. Vector-host interactions governing epidemiology of West Nile virus in southern California. Am J Trop Med Hyg 86: 12691282.[Crossref] [Google Scholar]
  52. Montgomery MJ, Thiemann T, Macedo P, Brown DA, Scott TW, , 2011. Blood-feeding patterns of the Culex pipiens complex in Sacramento and Yolo Counties, California. J Med Entomol 48: 398404.[Crossref] [Google Scholar]
  53. Thiemann TC, Lemenager DA, Kluh S, Carroll BD, Lothrop HD, Reisen WK, , 2012. Spatial variation in host feeding patterns of Culex tarsalis and the Culex pipiens Complex (Diptera: Culicidae) in California. J Med Entomol 49: 903916.[Crossref] [Google Scholar]
  54. Molecular Ecology Resources Primer Development Consortium Abreu AG, Albaina A, Alpermann TJ, Apkenas VE, Bankhead-Dronnet S, Bergek S, Berumen ML, Cho C-H, Clobert J, Coulon A, de Feraudy D, Estonba A, Hankeln T, Hochkirch A, Hsu T-W, Huang T-J, Irigoien X, Iriondo M, Kay KM, Kinitz T, Kothera L, le Hénanff M, Lieutier F, Lourdais O, Macrini CM, Manzano C, Martin C, Morris VR, Nanninga G, Pardo MA, Plieske J, Pointeau S, Prestegaard T, Quack M, Richard M, Savage HM, Schwarcz KD, Shade J, Simms EL, Solferini VN, Stevens VM, Veith M, Wen M-J, Wicker F, Yost JM, Zarraonaindia I, , , 2012. Permanent genetic resources added to the Molecular Ecology Resources Database 1 October 2011–30 November 2011. Mol Ecol Res 12: 374376.[Crossref] [Google Scholar]
  55. Smith J, Keyghobadi N, Matrone MA, Escher RL, Fonseca DM, , 2005. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes 5: 697700.[Crossref] [Google Scholar]
  56. Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, , 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.[Crossref] [Google Scholar]
  57. Edillo FT, McAbee RD, Foppa IM, Lanzaro GC, Cornel AJ, Spielman A, , 2007. A set of broadly applicable microsatellite markers for analyzing the structure of Culex pipiens (Diptera: Culicidae) populations. J Med Entomol 44: 145149.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.13-0040
Loading
/content/journals/10.4269/ajtmh.13-0040
Loading

Data & Media loading...

Supplementary PDF

  • Received : 22 Jan 2013
  • Accepted : 17 Apr 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error