Volume 89, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



There is increasing interest in rearing modified mosquitoes for mass release to control vector-borne diseases, particularly -infected for suppression of dengue. Successful introductions require release of high quality mosquitoes into natural populations. Potential indicators of quality are body size and shape. We tested to determine if size, wing/thorax ratio, and wing shape are associated with field fitness of -infected . Compared with field-collected mosquitoes, released mosquitoes were larger in size, with lower size variance and different wing shape but similar in wing-thorax ratio and its associated variance. These differences were largely attributed to nutrition and to a minor extent to Mel infection. Survival potential of released female mosquitoes was similar to those from the field. Females at oviposition sites tended to be larger than those randomly collected from BG-Sentinel traps. Rearing conditions should thus aim for large size without affecting wing/thorax ratios.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref] [Google Scholar]
  2. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref] [Google Scholar]
  3. Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S, Vreysen MJ, Robinson AS, Hendrichs J, , 2007. Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial. , eds. Area-Wide Control of Insect Pests: From Research to Field Implementation. Springer, Dordrecht, The Netherlands, 505515.[Crossref] [Google Scholar]
  4. de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L, Black WC, , 2011. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108: 47724775.[Crossref] [Google Scholar]
  5. Helinski ME, Hassan MM, El-Motasim WM, Malcolm CA, Knols BG, El-Sayed B, , 2008. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: irradiation, transportation, and field cage experimentation. Malar J 7: 65.[Crossref] [Google Scholar]
  6. Alphey L, Benedict M, Bellini R, Clark GG, Dame DA, Service MW, Dobson SL, , 2010. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis 10: 295311.[Crossref] [Google Scholar]
  7. Cerutti F, Bigler F, , 1995. Quality assessment of Trichogramma-brassicae in the laboratory. Entomol Exp Appl 75: 1926.[Crossref] [Google Scholar]
  8. Dutton A, Bigler F, , 1995. Flight activity assessment of the egg parasitoid Trichogramma brassicae (Hym: Trichogrammatidae) in laboratory and field conditions. Entomophaga 40: 223233.[Crossref] [Google Scholar]
  9. Dutton A, Cerutti F, Bigler F, , 1996. Quality and environmental factors affecting Trichogramma brassicae efficiency under field conditions. Entomol Exp Appl 81: 7179.[Crossref] [Google Scholar]
  10. Kolliker-Ott UM, Blows MW, Hoffmann AA, , 2003. Are wing size, wing shape and asymmetry related to field fitness of Trichogramma egg parasitoids? Oikos 100: 563573.[Crossref] [Google Scholar]
  11. Kazmer DJ, Luck RF, , 1991. Female body size, fitness and biological control quality: field experiments with Trichogramma pretiosum . Colloques de l'INRA 56: 3740. [Google Scholar]
  12. Navarro-Campos C, Martinez-Ferrer MT, Campos JM, Fibla JM, Alcaide J, Bargues L, Marzal C, Garcia-Mari F, , 2011. The influence of host fruit and temperature on the body size of adult Ceratitis capitata (Diptera: Tephritidae) under laboratory and field conditions. Environ Entomol 40: 931938.[Crossref] [Google Scholar]
  13. Montgomery BL, Ritchie SA, , 2002. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244246. [Google Scholar]
  14. Montgomery BL, Ritchie SA, Hart AJ, Long SA, Walsh ID, , 2004. Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia. J Am Mosq Control Assoc 20: 365369. [Google Scholar]
  15. Wilder-Smith A, Ooi E-E, Vasudevan S, Gubler D, , 2010. Update on dengue: epidemiology, virus evolution, antiviral drugs, and vaccine development. Curr Infect Dis Rep 12: 157164.[Crossref] [Google Scholar]
  16. McMeniman CJ, Lane AM, Fong AW, Voronin DA, Iturbe-Ormaetxe I, Yamada R, McGraw EA, O'Neill SL, , 2008. Host adaptation of a Wolbachia strain after long-term serial passage in mosquito cell lines. Appl Environ Microbiol 74: 69636969.[Crossref] [Google Scholar]
  17. Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HCJ, Sinden RE, Sinkins SP, , 2010. Wolbachia stimulates immune gene expression and inhibits Plasmodium development in Anopheles gambiae . PLoS Pathog 6: e1001143.[Crossref] [Google Scholar]
  18. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, , 2009. A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium . Cell 139: 12681278.[Crossref] [Google Scholar]
  19. Pan XL, Zhou GL, Wu JH, Bian GW, Lu P, Raikhel AS, Xi ZY, , 2012. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti . Proc Natl Acad Sci USA 109: E23E31.[Crossref] [Google Scholar]
  20. McMeniman CJ, Lane RV, Cass BN, Fong AW, Sidhu M, Wang YF, O'Neill SL, , 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti . Science 323: 141144.[Crossref] [Google Scholar]
  21. Harrington LC, Connors KJ, Cator LJ, Helinski ME, , 2009. Assortative mating in the dengue vector mosquito, Aedes aegypti . Am J Trop Med Hyg 81: 1017. [Google Scholar]
  22. Ponlawat A, Harrington LC, , 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti . Am J Trop Med Hyg 80: 395400. [Google Scholar]
  23. Xue RD, Barnard DR, Muller GC, , 2010. Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). J Med Entomol 47: 778782.[Crossref] [Google Scholar]
  24. Armbruster P, Hutchinson RA, , 2002. Pupal mass and wing length as indicators of fecundity in Aedes albopictus and Aedes geniculatus (Diptera: Culicidae). J Med Entomol 39: 699704.[Crossref] [Google Scholar]
  25. Maciel-De-Freitas R, Codego CT, Lourenco-De-Oliveira R, , 2007. Body size-associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol 21: 284292.[Crossref] [Google Scholar]
  26. Nasci RS, , 1986. Relationship between adult mosquito (Diptera, Culicidae) body size and parity in field populations. Environ Entomol 15: 874876.[Crossref] [Google Scholar]
  27. Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 7788.[Crossref] [Google Scholar]
  28. Breuker CJ, Brakefield PM, Gibbs M, , 2007. The association between wing morphology and dispersal is sex-specific in the glanville fritillary butterfly Melitaea cinxia (Lepidoptera: Nymphalidae). Eur J Entomol 104: 445452.[Crossref] [Google Scholar]
  29. Corbet SA, , 2000. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol Exp Appl 96: 289298.[Crossref] [Google Scholar]
  30. Hassall C, Thompson DJ, Harvey IF, , 2008. Latitudinal variation in morphology in two sympatric damselfly species with contrasting range dynamics (Odonata: Coenagrionidae). Eur J Entomol 105: 939944.[Crossref] [Google Scholar]
  31. Kemp DJ, , 2002. Butterfly contests and flight physiology: why do older males fight harder? Behav Ecol 13: 456461.[Crossref] [Google Scholar]
  32. Hoffmann AA, Ratna E, Sgro CM, Barton M, Blacket M, Hallas R, De Garis S, Weeks AR, , 2007. Antagonistic selection between adult thorax and wing size in field released Drosophila melanogaster independent of thermal conditions. J Evol Biol 20: 22192227.[Crossref] [Google Scholar]
  33. Santos M, Iriarte PF, Cespedes W, , 2005. Genetics and geometry of canalization and developmental stability in Drosophila subobscura . BMC Evol Biol 5: 7.[Crossref] [Google Scholar]
  34. Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, Dejong PA, Standfield GW, Sale RW, O'Neill SL, , 2011. A secure semi-field system for the study of Aedes aegypti . PLoS Negl Trop Dis 5: e988.[Crossref] [Google Scholar]
  35. Ball TS, Ritchie SR, , 2010. Sampling biases of the BG-Sentinel trap with respect to physiology, age, and body size of adult Aedes aegypti (Diptera: Culicidae). J Med Entomol 47: 649656.[Crossref] [Google Scholar]
  36. Maciel-de-Freitas R, Eiras AE, Lourenco-de-Oliveira R, , 2006. Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Mem Inst Oswaldo Cruz 101: 321325.[Crossref] [Google Scholar]
  37. Williams CR, Long SA, Russell RC, Ritchie SA, , 2006. Field efficacy of the BG-sentinel compared with CDC backpack aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22: 296300.[Crossref] [Google Scholar]
  38. Chadee DD, Ritchie SA, , 2010. Efficacy of sticky and standard ovitraps for Aedes aegypti in Trinidad, West Indies. J Vector Ecol 35: 395400.[Crossref] [Google Scholar]
  39. Chadee DD, Ritchie SA, , 2010. Oviposition behavior and parity rates of Aedes aegypti collected in sticky traps in Trinidad, West Indies. Acta Trop 116: 212216.[Crossref] [Google Scholar]
  40. Hiss EA, Fuchs MS, , 1972. Effect of matrone on oviposition in mosquito, Aedes aegypti . J Insect Physiol 18: 2217.[Crossref] [Google Scholar]
  41. Judson CL, , 1967. Feeding and oviposition behavior in Aedes aegypti (L). I. Preliminary studies of physiological control mechanisms. Biol Bull 133: 369378.[Crossref] [Google Scholar]
  42. Lavoipierre MMJ, , 1958. Biting behavior of mated and unmated females of an African strain of Aedes aegypti . Nature 181: 17811782.[Crossref] [Google Scholar]
  43. Ritchie SA, Rapley LP, Williams C, Johnson PH, Larkman M, Silcock RM, Long SA, Russell RC, , 2009. A lethal ovitrap-based mass trapping scheme for dengue control in Australia: I. Public acceptability and performance of lethal ovitraps. Med Vet Entomol 23: 295302.[Crossref] [Google Scholar]
  44. Detinova TS, , 1962. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr Ser World Health Organ 47: 13191. [Google Scholar]
  45. Clements AN, Boocock MR, , 1984. Ovarian development in mosquitoes: stages of growth and arrest and follicular resorption. Physiol Entomol 9: 18.[Crossref] [Google Scholar]
  46. Gwadz RW, Spielman A, , 1973. Corpus allatum control of ovarian development in Aedes aegypti . J Insect Physiol 19: 14411448.[Crossref] [Google Scholar]
  47. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, , 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans . Appl Environ Microbiol 78: 47404743.[Crossref] [Google Scholar]
  48. Rohlf FJ, , 2004. tpsUtil, File Utility Program, Version 1.26. Department of Ecology and Evolution, State University of New York at Stony Brook. [Google Scholar]
  49. Rohlf FJ, , 2010. tpsDig, Digitize Landmarks and Outlines, Version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook. [Google Scholar]
  50. Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, , 2011. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.[Crossref] [Google Scholar]
  51. Vargas RE, Ya-umphan P, Phumala-Morales N, Komalamisra N, Dujardin JP, , 2010. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect Genet Evol 10: 580585.[Crossref] [Google Scholar]
  52. Bookstein FL, , 1991. Morphometric Tools for Landmark Data Geometry and Biology. New York: Cambridge University Press. [Google Scholar]
  53. Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, Dujardin JP, , 2007. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti . Trop Med Int Health 12: 13541360.[Crossref] [Google Scholar]
  54. Siegel JP, Novak RJ, Lampman RL, Steinly BA, , 1992. Statistical appraisal of the weight wing length relationship of mosquitoes. J Med Entomol 29: 711714.[Crossref] [Google Scholar]
  55. Arnqvist G, Martensson T, , 1998. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zoologica Academiae Scientiarum Hungaricae 44: 7396. [Google Scholar]
  56. Klingenberg CP, McIntyre GS, , 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52: 13631375.[Crossref] [Google Scholar]
  57. Klingenberg CP, , 2011. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Res 11: 353357.[Crossref] [Google Scholar]
  58. Miller GE, , 1991. Asymptotic test statistics for coefficients of variation. Comm Statist Theory Methods 20: 33513363.[Crossref] [Google Scholar]
  59. Schluter D, , 1988. Estimating the form of natural-selection on a quantitative trait. Evolution 42: 849861.[Crossref] [Google Scholar]
  60. Kozak M, , 2010. dotplot.errors, a new R function to ease the pain of creating dotplots. Commun Biometry Crop Sci 5: 6977. [Google Scholar]
  61. Padmanabha H, Lord CC, Lounibos LP, , 2011. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Med Vet Entomol 25: 445453.[Crossref] [Google Scholar]
  62. Mohammed A, Chadee DD, , 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 119: 3843.[Crossref] [Google Scholar]
  63. Bader CA, Williams CR, , 2012. Mating, ovariole number and sperm production of the dengue vector mosquito Aedes aegypti (L.) in Australia: broad thermal optima provide the capacity for survival in a changing climate. Physiol Entomol 37: 136144.[Crossref] [Google Scholar]
  64. Briegel H, , 1990. Metabolic relationship between female body size, reserves and fecundity of Aedes aegypti . J Insect Physiol 36: 165172.[Crossref] [Google Scholar]
  65. Naksathit AT, Scott TW, , 1998. Effect of female size on fecundity and survivorship of Aedes aegypti fed only human blood versus human blood plus sugar. J Am Mosq Control Assoc 14: 148152. [Google Scholar]
  66. Steinwascher K, , 1982. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti . Environ Entomol 11: 150153.[Crossref] [Google Scholar]
  67. Briegel H, Knusel I, Timmermann SE, , 2001. Aedes aegypti: size, reserves, survival, and flight potential. J Vector Ecol 26: 2131. [Google Scholar]
  68. Nasci RS, , 1991. Influence of larval and adult nutrition on biting persistence in Aedes aegypti (Diptera, Culicidae). J Med Entomol 28: 522526.[Crossref] [Google Scholar]
  69. Mogi M, Miyagi I, Abadi K, Syafruddin, 1996. Inter- and intraspecific variation in resistance to desiccation by adult Aedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia. J Med Entomol 33: 5357.[Crossref] [Google Scholar]
  70. Helinski MEH, Harrington LC, , 2011. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti . J Med Entomol 48: 202211.[Crossref] [Google Scholar]
  71. Ponlawat A, Harrington LC, , 2007. Age and body size influence male sperm capacity of the dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 44: 422426.[Crossref] [Google Scholar]
  72. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  73. Loeschcke V, Bundgaard J, Barker JS, , 1999. Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D-buzzatii . J Evol Biol 12: 605623.[Crossref] [Google Scholar]
  74. Reiskind MH, Zarrabi AA, , 2012. Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito, Aedes albopictus . J Insect Physiol 58: 911917.[Crossref] [Google Scholar]
  75. Hoffmann AA, Woods RE, Collins E, Wallin K, White A, McKenzie JA, , 2005. Wing shape versus asymmetry as an indicator of changing environmental conditions in insects. Aust J Entomol 44: 233243.[Crossref] [Google Scholar]
  76. Schneider JR, Morrison AC, Astete H, Scott TW, Wilson ML, , 2004. Adult size and distribution of Aedes aegypti (Diptera: Culicidae) associated with larval habitats in Iquitos, Peru. J Med Entomol 41: 634642.[Crossref] [Google Scholar]
  77. Tun-Lin W, Burkot TR, Kay BH, , 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 3137.[Crossref] [Google Scholar]
  78. Muir LE, Kay BH, , 1997. Aedes aegypti as a vector of dengue viruses in northern Queensland: what have we learnt? Arbovirus research in Australia Proceedings Seventh Arbovirus Research in Australia Symposium and Second Mosquito Control Association of Australia Conference. Surfers Paradise, Australia, 25–29 November, 1996, 190193. [Google Scholar]
  79. Jirakanjanakit N, Dujardin J-P, , 2005. Discrimination of Aedes aegypti (Diptera: Culicidae) laboratory lines based on wing geometry. Southeast Asian J Trop Med Public Health 36: 858861. [Google Scholar]
  80. Jirakanjanakit N, Leemingsawat S, Dujardin JP, , 2008. The geometry of the wing of Aedes (Stegomyia) aegypti in isofemale lines through successive generations. Infect Genet Evol 8: 414421.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 30 Nov 2012
  • Accepted : 28 Mar 2013
  • Published online : 10 Jul 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error