Volume 89, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Rocio virus (ROCV) caused an outbreak of human encephalitis during the 1970s in Brazil and its immunopathogenesis remains poorly understood. CC-chemokine receptor 5 (CCR5) is a chemokine receptor that binds to macrophage inflammatory protein (MIP-1 α). Both molecules are associated with inflammatory cells migration during infections. In this study, we demonstrated the importance of the CCR5 and MIP-1 α, in the outcome of viral encephalitis of ROCV-infected mice. CCR5 and MIP-1 α knockout mice survived longer than wild-type (WT) ROCV-infected animals. In addition, knockout mice had reduced inflammation in the brain. Assessment of brain viral load showed mice virus detection five days post-infection in wild-type and CCR5−/− mice, while MIP-1 α−/− mice had lower viral loads seven days post-infection. Knockout mice required a higher lethal dose than wild-type mice as well. The CCR5/MIP-1 α axis may contribute to migration of infected cells to the brain and consequently affect the pathogenesis during ROCV infection.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, Kuno G, Markoff L, Wilkins LW, , 2007. Flaviviridae: Flaviviruses. , ed. Fields Virology. Philadelphia, PA: Lippincott Williams and Wilkins, 11541252. [Google Scholar]
  2. Medeiros DB, Nunes MR, Vasconcelos PF, Chang GJ, Kuno G, , 2007. Complete genome characterization of Rocio virus (Flavivirus: Flaviviridae), a Brazilian flavivirus isolated from a fatal case of encephalitis during an epidemic in Sao Paulo state. J Gen Virol 88: 22372246.[Crossref] [Google Scholar]
  3. Souza Lopes O, Coimbra TL, de Abreu Sacchetta L, Calisher CH, , 1978. Emergence of a new arbovirus disease in Brazil. I. Isolation and characterization of the etiologic agent, Rocio virus. Am J Epidemiol 107: 444449.[Crossref] [Google Scholar]
  4. Souza Lopes O, de Abreu Sacchetta L, Coimbra TL, Pinto GH, Glasser CM, , 1978. Emergence of a new arbovirus disease in Brazil. II. Epidemiologic studies on 1975 epidemic. Am J Epidemiol 108: 394401.[Crossref] [Google Scholar]
  5. Straatmann A, Santos-Torres S, Vasconcelos PF, da Rosa AP, Rodrigues SG, Tavares-Neto J, , 1997. Serological evidence of the circulation of the Rocio arbovirus (Flaviviridae) in Bahia [in Portuguese]. Rev Soc Bras Med Trop 30: 511515.[Crossref] [Google Scholar]
  6. Figueiredo LT, , 2000. The Brazilian flaviviruses. Microbes Infect 2: 16431649.[Crossref] [Google Scholar]
  7. Ferreira IB, Pereira LE, Rocco IM, Marti AT, de Souza LT, Iversson LB, , 1994. Surveillance of arbovirus infections in the Atlantic Forest Region, State of Sao Paulo, Brazil. I. Detection of hemagglutination-inhibiting antibodies in wild birds between 1978 and 1990. Rev Inst Med Trop Sao Paulo 36: 265274.[Crossref] [Google Scholar]
  8. Chávez JH, , 2006. Emergent flaviviruses of the Japanese encephalitis complex in Brazil. Virus Rev Res 11: 2832. [Google Scholar]
  9. Rossi D, Zlotnik A, , 2000. The biology of chemokines and their receptors. Annu Rev Immunol 18: 217242.[Crossref] [Google Scholar]
  10. Zlotnik A, Yoshie O, , 2000. Chemokines: a new classification system and their role in immunity. Immunity 12: 121127.[Crossref] [Google Scholar]
  11. Locati M, Otero K, Schioppa T, Signorelli P, Perrier P, Baviera S, Sozzani S, Mantovani A, , 2002. The chemokine system: tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy 57: 972982.[Crossref] [Google Scholar]
  12. Frydas S, Hatzistilianou M, Karagouni E, Madhappan B, D'Orazio N, Riccioni G, Conti F, Carratelli G, Kempuraj D, , 2003. Chemokines and parasites. Int J Immunopathol Pharmacol 16: 221224.[Crossref] [Google Scholar]
  13. Brenier-Pinchart MP, Pelloux H, Derouich-Guergour D, Ambroise-Thomas P, , 2001. Chemokines in host-protozoan-parasite interactions. Trends Parasitol 17: 292296.[Crossref] [Google Scholar]
  14. Lim JK, Glass WG, McDermott DH, Murphy PM, , 2006. CCR5: no longer a “good for nothing” gene: chemokine control of West Nile virus infection. Trends Immunol 27: 308312.[Crossref] [Google Scholar]
  15. Kasama T, Yajima N, Matsukura S, Adachi M, , 2006. Macrophage inflammatory protein 1 and CCR5 as attractive therapeutic targets for HIV infection. Recent Pat Antiinfect Drug Discov 1: 275280.[Crossref] [Google Scholar]
  16. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM, , 2005. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202: 10871098.[Crossref] [Google Scholar]
  17. Lim JK, Louie CY, Glaser C, Jean C, Johnson B, Johnson H, McDermott DH, Murphy PM, , 2008. Genetic deficiency of chemokine receptor CCR5 is a strong risk factor for symptomatic West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. J Infect Dis 197: 262265.[Crossref] [Google Scholar]
  18. Alkhatib G, , 2009. The biology of CCR5 and CXCR4. Curr Opin HIV AIDS 4: 96103.[Crossref] [Google Scholar]
  19. Cook DN, , 1996. The role of MIP-1 alpha in inflammation and hematopoiesis. J Leukoc Biol 59: 6166. [Google Scholar]
  20. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA, , 1996. CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272: 19551958.[Crossref] [Google Scholar]
  21. Barros VE, Saggioro FP, Neder L, de Oliveira Franca RF, Mariguela V, Chavez JH, Penharvel S, Forjaz J, da Fonseca BA, Figueiredo LT, , 2011. An experimental model of meningoencephalomyelitis by Rocio flavivirus in BALB/c mice: inflammatory response, cytokine production, and histopathology. Am J Trop Med Hyg 85: 363373.[Crossref] [Google Scholar]
  22. Reed LJ, Muench H, , 1938. A simple method of estimating fifty per cent endpoints. Am J Hyg 27: 493497. [Google Scholar]
  23. Gentry MK, Henchal EA, McCown JM, Brandt WE, Dalrymple JM, , 1982. Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg 31: 548555. [Google Scholar]
  24. Monath TP, Kemp GE, Cropp CB, Bowen GS, , 1978. Experimental infection of house sparrows (Passer domesticus) with Rocio virus. Am J Trop Med Hyg 27: 12511254. [Google Scholar]
  25. Henriques DF, Quaresma JA, Fuzii HT, Nunes MR, da Silva EV, Carvalho VL, Martins LC, Casseb SM, Chiang JO, Vasconcelos PF, , 2012. Persistence of experimental Rocio virus infection in the golden hamster (Mesocricetus auratus). Mem Inst Oswaldo Cruz 107: 630636.[Crossref] [Google Scholar]
  26. Barros VE, Ferreira BR, Livonesi M, Figueiredo LT, , 2009. Cytokine and nitric oxide production by mouse macrophages infected with Brazilian flaviviruses. Rev Inst Med Trop Sao Paulo 51: 141147.[Crossref] [Google Scholar]
  27. Kuhl SJ, Rosen H, , 1998. Nitric oxide and septic shock. From bench to bedside. West J Med 168: 176181. [Google Scholar]
  28. Wilkin TJ, Gulick RM, , 2012. CCR5 antagonism in HIV infection: current concepts and future opportunities. Annu Rev Med 63: 8193.[Crossref] [Google Scholar]
  29. Nansen A, Christensen JP, Andreasen SO, Bartholdy C, Christensen JE, Thomsen AR, , 2002. The role of CC chemokine receptor 5 in antiviral immunity. Blood 99: 12371245.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 20 Sep 2012
  • Accepted : 26 Jun 2013
  • Published online : 06 Nov 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error