1921
Volume 88, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Diurnal temperature fluctuations can fundamentally alter mosquito biology and mosquito-virus interactions in ways that impact pathogen transmission. We investigated the effect of two daily fluctuating temperature profiles on vector competence for dengue virus (DENV) serotype-1. A large diurnal temperature range of 18.6°C around a 26°C mean, corresponding with the low DENV transmission season in northwestern Thailand, reduced midgut infection rates and tended to extend the virus extrinsic incubation period. Dissemination was first observed at day 7 under small fluctuations (7.6°C; corresponding with high DENV transmission) and constant control temperature, but not until Day 11 for the large diurnal temperature range. Results indicate that female in northwest Thailand are less likely to transmit DENV during the low than high transmission season because of reduced DENV susceptibility and extended virus extrinsic incubation period. Better understanding of DENV transmission dynamics will come with improved knowledge of temperature effects on mosquito-virus interactions.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.12-0488
2013-04-03
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/88/4/689.html?itemId=/content/journals/10.4269/ajtmh.12-0488&mimeType=html&fmt=ahah

References

  1. Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj UT, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW, , 2003. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68: 191202. [Google Scholar]
  2. McLean DM, Miller MA, Grass PN, , 1975. Dengue virus transmission by mosquitoes incubated at low temperatures. Mosq News 35: 322327. [Google Scholar]
  3. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, , 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143152. [Google Scholar]
  4. Rohani A, Wong YC, Zamre I, Lee HL, Zurainee MN, , 2009. The effect of extrinsic incubation temperature on development of dengue serotype 2 and 4 viruses in Aedes aegypti (L.). Southeast Asian J Trop Med Public Health 40: 942950. [Google Scholar]
  5. Bates M, Roca-Garcia M, , 1946. The development of the virus of yellow fever in haemagogus mosquitoes. Am J Trop Med Hyg 26: 585605. [Google Scholar]
  6. Chamberlain RW, Sudia WD, , 1955. The effects of temperature upon the extrinsic incubation of eastern equine encephalitis in mosquitoes. Am J Hyg 62: 295305. [Google Scholar]
  7. Turell MJ, Lundstrom JO, , 1990. Effect of environmental temperature on the vector competence of Aedes aegypti and Ae. taeniorhynchus for Ockelbo virus. Am J Trop Med Hyg 43: 543550. [Google Scholar]
  8. Lundstrom JO, Turell MJ, Niklasson B, , 1990. Effect of environmental temperature on the vector competence of Culex pipiens and Cx. torrentium for Ockelbo virus. Am J Trop Med Hyg 43: 534542. [Google Scholar]
  9. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, , 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74607465.[Crossref] [Google Scholar]
  10. Parton WJ, Logan JE, , 1981. A model for diurnal variation in soil and air temperature. Agric Meteorol 23: 205216.[Crossref] [Google Scholar]
  11. Maciel-de-Freitas R, Koella JC, Lourenço-de-Oliveira R, , 2009. Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Trans R Soc Trop Med Hyg 105: 452458.[Crossref] [Google Scholar]
  12. Lambrechts L, Scott TW, , 2009. Mode of transmission and the evolution of arbovirus virulence in mosquito vectors. Proc R Soc Lond B Biol Sci 276: 13691378.[Crossref] [Google Scholar]
  13. Alto BW, Reiskind MH, Lounibos LP, , 2008. Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg 79: 688695. [Google Scholar]
  14. Westbrook CJ, Reiskind MH, Pesko K, Greene KE, Lounibos LP, , 2010. Larval environmental temperature and the susceptibility of Aedes albopiictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis 10: 241247.[Crossref] [Google Scholar]
  15. Muturi EJ, Alto BW, , 2011. Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector Borne Zoonotic Dis 11: 11571163.[Crossref] [Google Scholar]
  16. Carrington LB, Seifert SN, Willits NH, Lambrechts L, Scott TW, , 2013. Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life history traits. J Med Entomol 50: 4351. [Crossref] [Google Scholar]
  17. Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna R, Edman JD, , 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209220. [Google Scholar]
  18. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD, , 2006. Quantitation of falviviruses by fluorescent focus assay. J Virol Methods 134: 183189.[Crossref] [Google Scholar]
  19. Lambrechts L, Chevillon C, Albright RG, Thaisomboonsuk B, Richardson JH, Jarman RG, Scott TW, , 2009. Genetic specificity and potential for local adaptation between dengue viruses and mosquito vectors. BMC Evol Biol 9: 160.[Crossref] [Google Scholar]
  20. Gubler DJ, Suharyono W, Lubis I, Eram S, Gunarso S, , 1981. Epidemic dengue 3 in central Java, associated with low viremia in man. Am J Trop Med Hyg 30: 10941099. [Google Scholar]
  21. Gubler DJ, Suharyono W, Tan R, Abidin M, Sie A, , 1981. Viraemia in patients with naturally acquired dengue infection. Bull World Health Organ 59: 623630. [Google Scholar]
  22. Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuk B, Klungthong C, Richardson JH, Ponlawat A, Jarman RG, Scott TW, , 2012. Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 86: 18531861.[Crossref] [Google Scholar]
  23. McLean DM, Clarke AM, Coleman JC, Montalbetti CA, Skidmore AG, Walters TE, Wise R, , 1974. Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures. Can J Microbiol 20: 255262.[Crossref] [Google Scholar]
  24. Styer LM, Carey JR, Wang J-L, Scott TW, , 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111117. [Google Scholar]
  25. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, , 2008. Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol 45: 307313.[Crossref] [Google Scholar]
  26. Feder ME, Hoffman GE, , 1999. Heat shock proteims, molecular chaperones and the heat shock response: evolutionary and ecological physiology. Annu Rev Physiol 61: 243282.[Crossref] [Google Scholar]
  27. Ciota AT, Styer LM, Meola MA, Kramer LD, , 2011. The costs of resistance and infection as determinants of West Nile virus susceptibility in Culex mosquitoes. BMC Ecol 11: 23.[Crossref] [Google Scholar]
  28. Paaijmans KP, Blanford S, Bell AS, Blanford JI, Read AF, Thomas MB, , 2010. Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci USA 107: 1513515139.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.12-0488
Loading
/content/journals/10.4269/ajtmh.12-0488
Loading

Data & Media loading...

  • Received : 10 Aug 2012
  • Accepted : 01 Jan 2013
  • Published online : 03 Apr 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error