Volume 88, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We report a statistical mixed model for assessing the importance of climate and non-climate drivers of interannual variability in dengue fever in southern coastal Ecuador. Local climate data and Pacific sea surface temperatures (Oceanic Niño Index [ONI]) were used to predict dengue standardized morbidity ratios (SMRs; 1995–2010). Unobserved confounding factors were accounted for using non-structured yearly random effects. We found that ONI, rainfall, and minimum temperature were positively associated with dengue, with more cases of dengue during El Niño events. We assessed the influence of non-climatic factors on dengue SMR using a subset of data (2001–2010) and found that the percent of households with immatures was also a significant predictor. Our results indicate that monitoring the climate and non-climate drivers identified in this study could provide some predictive lead for forecasting dengue epidemics, showing the potential to develop a dengue early-warning system in this region.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. PAHO, 2011. Number of Reported Cases of Dengue and Severe Dengue (DS) in the Americas by Country (1995–2011). Available at: www.who.int/denguenet. Accessed November 15, 2011. [Google Scholar]
  2. WHO, 2008. The Global Burden of Disease: 2004 Update. Geneva: World Health Organization. [Google Scholar]
  3. Philander SG, , 1990. El Niño, La Niña, and the Southern Oscillation. San Diego, CA: Academic Press. [Google Scholar]
  4. Lyon B, Barnston AG, , 2005. ENSO and the spatial extent of interannual precipitation extremes in tropical land areas. J Clim 18: 50955109.[Crossref] [Google Scholar]
  5. Moore CB, Cline BL, Ruiz-Tiben E, Lee D, Romney-Joseph H, Rivera-Correa E, , 1978. Aedes aegypti in Puerto Rico: environmental determinants of larval abundance and relation to dengue virus transmission. Am J Trop Med Hyg 27: 12251231. [Google Scholar]
  6. Barrera R, Amador M, Clark GG, , 2006. Use of the pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 74: 290302. [Google Scholar]
  7. Montgomery BL, Ritchie SA, , 2002. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244246. [Google Scholar]
  8. Bar-Zeev M, , 1958. The effect of temperature on the growth rate and survival of the immature stages of Aedes aegypti (L). Bull Entomol Res 49: 157163.[Crossref] [Google Scholar]
  9. Rueda LM, Patel KJ, Axtell RC, Stinner RE, , 1990. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27: 892898.[Crossref] [Google Scholar]
  10. Tun-Lin W, Burkot TR, Kay BH, , 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 3137.[Crossref] [Google Scholar]
  11. Mohammed A, Chadee DD, , 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Trop 119: 3843.[Crossref] [Google Scholar]
  12. Yasuno M, Tonn RJ, , 1970. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 43: 319325. [Google Scholar]
  13. Pant CP, Yasuno M, , 1973. Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Entomol 10: 219223.[Crossref] [Google Scholar]
  14. Watts DM, Burke DS, Harrison BA, Whitmire RE, Nisalak A, , 1986. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143152. [Google Scholar]
  15. Thu HM, Aye KM, Thein S, , 1998. The effect of temperature and humidity on dengue virus propagation in Aedes aegypti mosquitoes. Southeast Asian J Trop Med Public Health 29: 280284. [Google Scholar]
  16. Cazelles B, Chavez M, McMichael AJ, Hales S, , 2005. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106.[Crossref] [Google Scholar]
  17. Colón-González FJ, Lake IR, Bentham G, , 2011. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg 84: 757763.[Crossref] [Google Scholar]
  18. Gagnon AS, Bush ABG, Smoyer-Tomic KE, , 2001. Dengue epidemics and the El Niño Southern Oscillation. Clim Res 19: 3543.[Crossref] [Google Scholar]
  19. Hay SI, Myers MF, Burke DS, Vaughn DW, Endy T, Ananda N, Shanks GD, Snow RW, Rogers DJ, , 2000. Etiology of interepidemic periods of mosquito-borne disease. Proc Natl Acad Sci USA 97: 93359339.[Crossref] [Google Scholar]
  20. Keating J, , 2001. An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53: 15871597.[Crossref] [Google Scholar]
  21. Thammapalo S, Chongsuwiwatwong V, McNeil D, Geater A, , 2005. The climatic factors influencing the occurrence of dengue hemorrhagic fever in Thailand. Southeast Asian J Trop Med Public Health 36: 191196. [Google Scholar]
  22. Johansson MA, Cummings DAT, Glass GE, , 2009. Multiyear climate variability and dengue—El Niño Southern Oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6: e1000168.[Crossref] [Google Scholar]
  23. Wearing HJ, Rohani P, , 2006. Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci USA 103: 1180211807.[Crossref] [Google Scholar]
  24. Gubler DJ, , 2002. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10: 100103.[Crossref] [Google Scholar]
  25. Focks DA, Barrera R, , 2006. Dengue Transmission Dynamics: Assessment and Implications for Control. Report on the Scientific Working Group on Dengue, 2006. Geneva: World Health Organization, 92109. [Google Scholar]
  26. Kuhn K, Campbell-Lendrum D, Haines A, Cox J, , 2005. Using Climate to Predict Infectious Disease Epidemics. Available at: http://www.who.int/globalchange/publications/infectdiseases/en/index.html. Accessed July 24, 2012. [Google Scholar]
  27. Thomson MC, Mason SJ, Phindela T, Connor SJ, , 2005. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 73: 214221. [Google Scholar]
  28. Kovats RS, Bouma MJ, Hajat S, Worrall E, Haines A, , 2003. El Niño and health. Lancet 362: 14811489.[Crossref] [Google Scholar]
  29. Schreiber KV, , 2001. An investigation of relationships between climate and dengue using a water budgeting technique. Int J Biometeorol 45: 8189.[Crossref] [Google Scholar]
  30. Lowe R, Bailey TC, Stephenson DB, Graham RJ, Coelho CAS, Sa Carvalho M, Barcellos C, , 2011. Spatio-temporal modeling of climate-sensitive disease risk: towards an early warning system for dengue in Brazil. Comput Geosci 37: 371381.[Crossref] [Google Scholar]
  31. Yu H-L, Yang S-J, Yen H-J, Christakos G, , 2011. A spatio-temporal climate-based model of early dengue fever warning in southern Taiwan. Stochastic Environ Res Risk Assess 25: 485494.[Crossref] [Google Scholar]
  32. Pourrut P, Nouvelot JF, Pourrut P, , 1995. Anomalies and extreme climate phenomena. , ed. Water in Ecuador: Climate, Precipitation, Runoff. Quito, Ecuador: RR Associated Editors, 6776. [Google Scholar]
  33. Rossel F, Le Goulven P, Cadier E, , 1999. Areal distribution of the influence of ENSO on the annual rainfall in Ecuador. Journal of Water Science 12: 183200. [Google Scholar]
  34. Rossel F, Cadier E, Gómez G, , 1996. Flooding in coastal Ecuador: causes; exisiting and future protection projects. Bulletin of the French Institute of Andean Studies 25: 399420. [Google Scholar]
  35. INAMHI, 2012. Rainfall during the trimester January – March 2012 on the coast of Ecuador. Guayaquil, Ecuador. National Institute of Meteorology and Hydrology (INAMHI) Decentralized Process, Guayas Watershed.
  36. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, , 2003. The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology 4: 11471167.[Crossref] [Google Scholar]
  37. NOAA, 2012. National Oceanic and Atmospheric Administration (United Stated Department of Commerce) Climate Prediction Center. Cold and Warm Episodes by Season (1951–present). Available at: http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. Accessed July 24, 2012. [Google Scholar]
  38. Lowe R, Bailey TC, Stephenson DB, Jupp TE, Graham RJ, Barcellos C, Carvalho MS, , 2013. The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med 32: 864883.[Crossref] [Google Scholar]
  39. Cameron AC, Trivedi PK, , 1998. Regression Analysis of Count Data. Econometric Society Monograph No 30. New York, NY: Cambridge University Press, 434.[Crossref] [Google Scholar]
  40. Hilbe JM, , 2011. Negative Binomial Regression. New York, NY: Cambridge University Press, 264.[Crossref] [Google Scholar]
  41. McCulloch CE, Neuhaus JM, , 2001. Generalized Linear Mixed Models. New York, NY: John Wiley & Sons, Inc., 358. [Google Scholar]
  42. Gilks WR, Richardson S, Spiegelhalter DJ, , 1996. Markov Chain Monte Carlo in Practice. Boca Raton, FL: Chapman & Hall/CRC, 486. [Google Scholar]
  43. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A, , 2002. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol 64: 583639.[Crossref] [Google Scholar]
  44. Kramer M, , 2005. R2 statistics for mixed models. Proceedings of the Conference on Applied Statistics in Agriculture 17: 148160. [Google Scholar]
  45. Gelman A, Meng X, Stern H, , 1996. Posterior predictive assessment of model fitness via realized discrepancies. Stat Sin 6: 733759. [Google Scholar]
  46. Chowell G, Sanchez F, , 2006. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68: 40. [Google Scholar]
  47. Hurtado-Díaz M, Riojas-Rodríguez H, Rothenberg SJ, Gomez-Dantés H, Cifuentes E, , 2007. Impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health 12: 13271337.[Crossref] [Google Scholar]
  48. Chowell G, Torre CA, Munayco-Escate C, Suarez-Ognio L, Lopez-Cruz R, Hyman JM, Castillo-Chavez C, , 2008. Spatial and temporal dynamics of dengue fever in Peru: 1994–2006. Epidemiol Infect 136: 16671677.[Crossref] [Google Scholar]
  49. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  50. Nagao Y, Thavara U, Chitnumsup P, Tawatsin A, Chansang C, Campbell-Lendrum D, , 2003. Climatic and social risk factors for Aedes infestation in rural Thailand. Trop Med Int Health 8: 650659.[Crossref] [Google Scholar]
  51. Lambrecht L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, , 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti . Proc Natl Acad Sci USA 108: 74617465. [Google Scholar]
  52. Barrera R, Amador M, MacKay AJ, , 2011. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl Trop Dis 5: e1378.[Crossref] [Google Scholar]
  53. Hayden MH, Uejio CK, Walker K, Ramberg F, Moreno R, Rosales C, Gameros M, Mearns LO, Zielinski-Gutierrez E, Janes CR, , 2010. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, US/Sonora, MX border. Ecohealth 7: 6477.[Crossref] [Google Scholar]
  54. Pontes RJ, Freeman J, Oliveira-Lima JW, Hodgson JC, Spielman A, , 2000. Vector densities that potentiate dengue outbreaks in a Brazilian city. Am J Trop Med Hyg 62: 378383. [Google Scholar]
  55. Bamston AG, Chelliah M, Goldenberg SB, , 1997. Documentation of a highly ENSO-related SST region in the equatorial Pacific: research note. Atmosphere-ocean 35: 367383.[Crossref] [Google Scholar]
  56. Rossel F, Cadier E, , 2009. El Niño and prediction of anomalous monthly rainfalls in Ecuador. Hydrol Process 23: 32533260.[Crossref] [Google Scholar]
  57. Jupp TE, Lowe R, Coelho CA, Stephenson DB, , 2012. On the visualization, verification and recalibration of ternary probabilistic forecasts. Philos Transact A Math Phys Eng Sci 370: 11001120.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 07 Aug 2012
  • Accepted : 30 Jan 2013
  • Published online : 01 May 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error