1921
Volume 89, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The purpose of this study was to quantify the relationship between climate variation and transmission of hemorrhagic fever with renal syndrome (HFRS) in Heilongjiang Province, a highly endemic area for HFRS in China. Monthly notified HFRS cases and climatic data for 2001–2009 in Heilongjiang Province were collected. Using a seasonal autoregressive integrated moving average model, we found that relative humidity with a one-month lag (β = −0.010, = 0.003) and a three-month lag (β = 0.008, = 0.003), maximum temperature with a two-month lag (β = 0.082, = 0.028), and southern oscillation index with a two-month lag (β = −0.048, = 0.019) were significantly associated with HFRS transmission. Our study also showed that predicted values expected under the seasonal autoregressive integrated moving average model were highly consistent with observed values (Adjusted = 83%, root mean squared error = 108). Thus, findings may help add to the knowledge gap of the role of climate factors in HFRS transmission in China and also assist national local health authorities in the development/refinement of a better strategy to prevent HFRS transmission.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.12-0473
2013-11-06
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/14761645/89/5/1006.html?itemId=/content/journals/10.4269/ajtmh.12-0473&mimeType=html&fmt=ahah

References

  1. Ministry of Health, 1998. Handbook of Epidemic Hemorrhagic Fever Prevention and Control. Beijing: China People's Health Publishing House, 6380.
    [Google Scholar]
  2. Schmaljohn C, Hjelle B, 1997. Hantaviruses: a global disease problem. Emerg Infect Dis 3: 95104.[Crossref]
    [Google Scholar]
  3. Bi Z, Formenty PB, Roth CE, 2008. Hantavirus infection: a review and global update. J Infect Dev Ctries 2: 323.[Crossref]
    [Google Scholar]
  4. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, Zhang WY, Li XW, Cao WC, 2007. Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China. Emerg Infect Dis 13: 13011306.[Crossref]
    [Google Scholar]
  5. Jiang JF, Wu XM, Zuo SQ, Wang RM, Chen LQ, Wang BC, Dun Z, Zhang PH, Guo TY, Cao WC, 2006. Study on the association between Hantavirus infection and Rattus norvegicus . Chin J Epidemiol 27: 196199.
    [Google Scholar]
  6. Zhang WY, Fang LQ, Jiang JF, Hui FM, Glass GE, Yan L, Xu YF, Zhao WJ, Yang H, Liu W, Cao WC, 2009. Predicting the risk of Hantavirus infection in Beijing, People's Republic of China. Am J Trop Med Hyg 80: 678683.
    [Google Scholar]
  7. Bi P, Wu X, Zhang F, Parton K, Tong S, 1998. Seasonal rainfall variability, the incidence of hemorrhagic fever with renal syndrome, and prediction of the disease in low-lying areas of China. Am J Epidemiol 148: 276281.[Crossref]
    [Google Scholar]
  8. Bi P, Tong S, Donald K, Parton K, Ni J, 2002. Climatic, reservoir and occupational variables and the transmission of haemorrhagic fever with renal syndrome in China. Int J Epidemiol 31: 189193.[Crossref]
    [Google Scholar]
  9. Ernest SKM, Brown JH, Parmenter RR, 2000. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos 88: 470482.[Crossref]
    [Google Scholar]
  10. Glass GE, Shields T, Cai B, Yates TL, Parmenter R, 2007. Persistently highest risk areas for hantavirus pulmonary syndrome: potential sites for refugia. Ecol Appl 17: 129139.[Crossref]
    [Google Scholar]
  11. Langlois JP, Fahrig L, Merriam G, Artsob H, 2001. Landscape structure infuences continental distribution of Hantavirus in deer mice. Landscape Ecol 16: 255266.[Crossref]
    [Google Scholar]
  12. Madsen T, Shine R, 1999. Rainfall and rats: climatically-driven dynamics of a tropical rodent population. Aust J Ecol 24: 8089.[Crossref]
    [Google Scholar]
  13. Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, Davis T, Tanda DT, Miller L, Frampton JW, Porter R, Bryan RT, 1999. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States. Emerg Infect Dis 5: 8794.[Crossref]
    [Google Scholar]
  14. Luis AD, Douglass RJ, Mills JN, Bjørnstad ON, 2010. The effect of seasonality, density and climate on the population dynamics of Montana deer mice, important reservoir hosts for Sin Nombre Hantavirus. J Anim Ecol 79: 462470.[Crossref]
    [Google Scholar]
  15. Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C, Peters CJ, Bryan R, 2000. Using remotely sensed data to identify areas at risk for Hantavirus pulmonary syndrome. Emerg Infect Dis 6: 238247.[Crossref]
    [Google Scholar]
  16. Hjelle B, Glass GE, 2000. Outbreak of Hantavirus infection in the Four Corners region of the United States in the wake of the 1997–1998 El Niño-Southern Oscillation. J Infect Dis 181: 15691573.[Crossref]
    [Google Scholar]
  17. Tamerius JD, Wise EK, Uejio CK, McCoy AL, Comrie AC, 2007. Climate and human health: synthesizing environmental complexity and uncertainty. Stochastic Environ Res Risk Assess 21: 601613.[Crossref]
    [Google Scholar]
  18. Tersago K, Verhagen R, Servais A, Heyman P, Ducoffre G, Leirs H, 2009. Hantavirus disease (nephropathia epidemica) in Belgium: effects of tree seed production and climate. Epidemiol Infect 137: 250256.[Crossref]
    [Google Scholar]
  19. Klempa B, 2009. Hantaviruses and climate change. Clin Microbiol Infect 15: 518523.[Crossref]
    [Google Scholar]
  20. Bi P, Parton K, 2003. El Niño and incidence of hemorrhagic fever with renal syndrome in China. JAMA 289: 176177.[Crossref]
    [Google Scholar]
  21. Fang LQ, Wang XJ, Liang S, Yan LL, Song SX, Zhang WY, Qian Q, Li YP, Wei L, Wang ZQ, Yang H, Cao WC, 2010. Spatiotemporal trends and climatic factors of hemorrhagic fever with renal syndrome epidemic in Shandong Province, China. PLoS Negl Trop Dis 4: 110.[Crossref]
    [Google Scholar]
  22. Pettersson L, Boman J, Juto P, Evander M, Ahlm C, 2008. Outbreak of Puumala virus infection, Sweden. Emerg Infect Dis 14: 808810.[Crossref]
    [Google Scholar]
  23. Schwarz AC, Ranft U, Piechotowski I, Childs JE, Brockmann SO, 2009. Risk factors for human infection with Puumala virus, southwestern Germany. Emerg Infect Dis 15: 10321039.[Crossref]
    [Google Scholar]
  24. Huang RH, Wu YF, 1989. The infuence of ENSO on the summer climate change in China and its mechanism. Adv Atmos Sci 6: 2132.[Crossref]
    [Google Scholar]
  25. Zhang WY, Guo WD, Fang LQ, Li CP, Bi P, Glass GE, Jiang JF, Sun SH, Qian Q, Liu W, Yan L, Yang H, Tong SL, Cao WC, 2010. Climate variability and hemorrhagic fever with renal syndrome transmission in northeastern China. Environ Health Perspect 118: 915920.[Crossref]
    [Google Scholar]
  26. National Centers for Environmental Prediction, 2010. Climatic Forecast System. Available at: http://www.cpc.ncep.noaa.gov/data/indices/soi. Accessed June 6, 2010.
    [Google Scholar]
  27. Hu W, Tong S, Mengersen K, Connell D, 2007. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models. Ann Epidemiol 17: 679688.[Crossref]
    [Google Scholar]
  28. Allard R, 1998. Use of time-series analysis in infectious disease surveillance. Bull World Health Organ 76: 327333.
    [Google Scholar]
  29. Box G, Jenkins G, 1970. Time-Series Analysis: Forecasting and Control. San Francisco, CA: Holden-Day, 376382.
    [Google Scholar]
  30. Hu W, Mengersen K, Bi P, Tong S, 2007. Time series analysis of the risk factors for hemorrhagic fever with renal syndrome: comparison of statistical models. Epidemiol Infect 135: 245252.[Crossref]
    [Google Scholar]
  31. Bozdogan H, 1987. Model-selection and Akaike's information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52: 345370.[Crossref]
    [Google Scholar]
  32. Liddle AR, 2007. Information criteria for astrophysical model selection. Mon Not R Astron Soc 377: 7478.[Crossref]
    [Google Scholar]
  33. SAS, 2008. SAS/ETS®9.2: User's Guide. Cary, NC: SAS Institute Inc., 177300.
    [Google Scholar]
  34. Calisher CH, Wagoner KD, Amman BR, Root JJ, Douglass RJ, Kuenzi AJ, Abbott KD, Parmenter C, Yates TL, Ksiazek TG, Beaty BJ, Mills JN, 2007. Demographic factors associated with prevalence of antibody to Sin Nombre virus in deer mice in the western United States. J Wildl Dis 43: 111.[Crossref]
    [Google Scholar]
  35. Glass GE, Livingstone W, Mills JN, Hlady WG, Fine JB, Biggler W, Coke T, Frazier D, Atherley S, Rollin PE, Ksiazek TG, Peters CJ, Childs JE, 1998. Black Creek Canal virus infection in Sigmodon hispidus in southern Florida. Am J Trop Med Hyg 59: 699703.
    [Google Scholar]
  36. Yahnke CJ, Meserve PL, Ksiazek TG, Mills JN. Patterns of infection with Laguna Negra virus in wild populations of Calomys laucha in the central Paraguayan Chaco 2001. Am J Trop Med Hyg 65: 768776.
    [Google Scholar]
  37. Luo CW, Liu QY, Hou JL, 2009. Correlation analysis and regression model of epidemic factors of hemorrhagic fever with renal syndrome in Heihe City, Heilongjiang Province. Dis Surveill 24: 118120.
    [Google Scholar]
  38. Thomson MC, Mason SJ, Phindela T, Connor SJ, 2005. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 73: 214221.
    [Google Scholar]
  39. Zhou G, Minakawa N, Githeko AK, Yan G, 2004. Association between climate variability and malaria epidemics in the east African highlands. Proc Natl Acad Sci USA 101: 23752380.[Crossref]
    [Google Scholar]
  40. Cazelles B, Chavez M, McMichael AJ, Hales S, 2005. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106.[Crossref]
    [Google Scholar]
  41. Hales S, de Wet N, Maindonald J, Woodward A, 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830834.[Crossref]
    [Google Scholar]
  42. Tong S, Hu W, 2001. Climate variation and incidence of Ross river virus in Cairns, Australia: a time-series analysis. Environ Health Perspect 109: 12711273.[Crossref]
    [Google Scholar]
  43. Tong S, Hu W, 2002. Different responses of Ross River virus to climate variability between coastline and inland cities in Queensland, Australia. Occup Environ Med 59: 739744.[Crossref]
    [Google Scholar]
  44. Chaves LF, Pascual M, 2006. Climate cycles and forecasts of cutaneous leishmaniasis, a nonstationary vector-borne disease. PLoS Med 3: 295.[Crossref]
    [Google Scholar]
  45. Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E, Gage KL, 2007. Climate change effects on plague and tularemia in the United States. Vector Borne Zoonotic Dis 7: 529540.[Crossref]
    [Google Scholar]
  46. Hallett TB, Coulson T, Pilkington JG, Clutton-Brock TH, Pemberton JM, Grenfell BT, 2004. Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430: 7175.[Crossref]
    [Google Scholar]
  47. Zheng ZM, Jiang ZK, Chen AG, 2008. Rodents Zoology. Shanghai: Shanghai Jiaotong University Press, 400450.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.12-0473
Loading
/content/journals/10.4269/ajtmh.12-0473
Loading

Data & Media loading...

  • Received : 02 Aug 2012
  • Accepted : 12 Jul 2013
  • Published online : 06 Nov 2013
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error