Volume 89, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Transgenic strains of have been engineered to help control transmission of dengue virus. Although resources have been invested in developing the strains, we lack data on the ecology of mosquitoes that could impact the success of this approach. Although studies of intra-specific competition have been conducted using larvae, none of these studies examine mixed age cohorts at densities that occur in the field, with natural nutrient levels. Experiments were conducted in Mexico to determine the impact of direct and delayed density dependence on populations. Natural water, food, and larval densities were used to estimate the impacts of density dependence on larval survival, development, and adult body size. Direct and delayed density-dependent factors had a significant impact on larval survival, larval development, and adult body size. These results indicate that control methods attempting to reduce mosquito populations may be counteracted by density-dependent population regulation.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  2. Ponlawat A, Harrington LC, , 2005. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42: 844849.[Crossref] [Google Scholar]
  3. Morrison AC, Gray K, Getis A, Astete H, Sihuincha M, Focks D, Watts D, Stancil JD, Olson JG, Blair P, Scott TW, , 2004. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41: 11231142.[Crossref] [Google Scholar]
  4. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R, , 2008. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti . PLoS Med 5: 362366.[Crossref] [Google Scholar]
  5. Scott TW, Morrison AC, , 2010. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention in dengue virus. Curr Top Microbiol Immunol 338: 115128. [Google Scholar]
  6. Nathan MB, Knudsen AB, , 1991. Aedes aegypti infestation characteristics in several Caribbean countries and implications for integrated community-based control. J Am Mosq Control Assoc 7: 400404. [Google Scholar]
  7. Fernández EA, Leontsini E, Sherman C, Chan AS, Reyes CE, Lozano RC, Fuentes BA, Nichter M, Winch PJ, , 1998. Trial of a community-based intervention to decrease infestation of Aedes aegypti mosquitoes in cement washbasins in El Progreso, Honduras. Acta Trop 70: 171183.[Crossref] [Google Scholar]
  8. Bang YH, Pant CP, , 1972. Field trial of abate larvicide for control of Aedes aegypti in Bangkok, Thailand. Bull World Health Organ 46: 416425. [Google Scholar]
  9. Thavara U, Tawatsin A, Kong-Ngamsuk W, Mulla MS, , 2004. Efficacy and longevity of a new formulation of temephos larvicide tested in village-scale trials against larval Aedes aegypti in water-storage containers. J Am Mosq Control Assoc 20: 176182. [Google Scholar]
  10. James AA, , 2005. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol 21: 6467.[Crossref] [Google Scholar]
  11. Sinkins SP, Gould F, , 2006. Gene drive systems for insect disease vectors. Nat Rev Genet 7: 427435.[Crossref] [Google Scholar]
  12. Gould F, Magori K, Huang YX, , 2006. Genetic strategies for controlling mosquito-borne diseases. Am Sci 94: 238246.[Crossref] [Google Scholar]
  13. Fu GL, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Phuc HK, Marinotti O, Jasinskiene N, James AA, Alphey L, , 2010. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107: 45504554.[Crossref] [Google Scholar]
  14. Wise de Valdez MR, Nimmo D, Betz J, Gong H, James AA, Alphey L, Black WC, , 2011. Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci USA 108: 47724775.[Crossref] [Google Scholar]
  15. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref] [Google Scholar]
  16. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref] [Google Scholar]
  17. Legros M, Lloyd AL, Huang YX, Gould F, , 2009. Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. J Med Entomol 46: 409419.[Crossref] [Google Scholar]
  18. Southwood TR, Murdie G, Yasuno M, Tonn RJ, Reader PM, , 1972. Studies on the life budget of Ae. aegypti in Wat Samphaya, Bangkok, Thailand. Bull World Health Organ 46: 211226. [Google Scholar]
  19. Barbosa P, Peters TM, Greenough NC, , 1972. Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress. Environ Entomol 1: 8993.[Crossref] [Google Scholar]
  20. Agudelo-Silva F, Spielman A, , 1984. Paradoxical effects of simulated larviciding on production of adult mosquitoes. Am J Trop Med Hyg 33: 12671269. [Google Scholar]
  21. Agnew P, Hide M, Sidobre C, Michalakis Y, , 2002. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol Entomol 27: 396402.[Crossref] [Google Scholar]
  22. Reiskind MH, Lounibos LP, , 2009. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus . Med Vet Entomol 23: 6268.[Crossref] [Google Scholar]
  23. Subra R, Mouchet M, , 1984. The regulation of preimaginal populations of Aedes aegypti (Diptera, Culicidae) on the Kenya Coast. Food as a main regulatory factor. Ann Trop Med Parasitol 78: 6370.[Crossref] [Google Scholar]
  24. Macia A, , 2006. Differences in performance of Aedes aegypti larvae raised at different densities in tires and ovitraps under field conditions in Argentina. J Vector Ecol 31: 371377.[Crossref] [Google Scholar]
  25. Xu C, Legros M, Gould F, Lloyd AL, , 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop DIS TD 4: e830.[Crossref] [Google Scholar]
  26. Magori K, Legros M, Puente ME, Focks DA, Scott TW, Lloyd AL, Gould F, , 2009. Skeeter Buster: a stochastic, spatially-explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Negl Tro Dis 3: e508.[Crossref] [Google Scholar]
  27. Alyokhin A, Drummond FA, Sewell G, , 2005. Density-dependent regulation in populations of potato-colonizing aphids. Popul Ecol 47: 257266.[Crossref] [Google Scholar]
  28. Cooke BJ, Lorenzetti F, , 2006. The dynamics of forest tent caterpillar outbreaks in Quebec, Canada. For Ecol Manage 226: 110121.[Crossref] [Google Scholar]
  29. Estay SA, Mauricio L, Labra FA, Harrington R, , 2012. Increased outbreak frequency associated with changes in the dynamic behaviour of populations of two aphid species. Oikos 121: 614622.[Crossref] [Google Scholar]
  30. Walsh RK, Facchinelli L, Ramsey JM, Bond JG, Gould F, , 2011. Assessing the impact of density dependence in field populations of Aedes aegypti . J Vector Ecol 36: 300307.[Crossref] [Google Scholar]
  31. Aspbury AS, Juliano SA, , 1998. Negative effects of habitat drying and prior exploitation on the detritus resource in an ephemeral aquatic habitat. Oecologia 115: 137148.[Crossref] [Google Scholar]
  32. Walsh RK, Bradley C, Apperson CS, Gould F, , 2012. An experimental field study of delayed density dependence in natural populations of Aedes albopictus . PLoS ONE 7: e35959.[Crossref] [Google Scholar]
  33. Koenraadt CJ, , 2008. Pupal dimensions as predictors of adult size in fitness studies of Aedes aegypti (Diptera: Culicidae). J Med Entomol 45: 331336.[Crossref] [Google Scholar]
  34. Ott RL, Longnecker MT, , 2008. An Introduction to Statistical Methods and Data Analysis. Sixth edition. Pacific Grove, CA: Duxbury Press. [Google Scholar]
  35. Gilpin ME, McClelland G, , 1979. Systems analysis of the yellow fever mosquito Ae. aegypti . Fortschr Zool 25: 355388. [Google Scholar]
  36. Chambers GM, Klowden MJ, , 1990. Correlation of nutritional reserves with a critical weight for pupation in larval Aedes aegypti mosquitoes. J Am Mosq Control Assoc 6: 394399. [Google Scholar]
  37. Arrivillaga J, Barrera R, , 2004. Food as a limiting factor for Aedes aegypti in water-storage containers. J Vector Ecol 29: 1120. [Google Scholar]
  38. Ponlawat A, Harrington LC, , 2005. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 42: 844849.[Crossref] [Google Scholar]
  39. Steinwascher K, , 1982. Relationship between pupal mass and adult survivorship and fecundity for Aedes aegypti . Environ Entomol 11: 150153.[Crossref] [Google Scholar]
  40. Briegel H, , 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti . J Insect Physiol 36: 165172.[Crossref] [Google Scholar]
  41. NCDC National Climatic Data Center. Climate Data Online. Available at: http://www7.ncdc.noaa.gov/CDO/. Accessed February 15, 2011. [Google Scholar]
  42. Rueda LM, Patel KJ, Axtell RC, Stinner RE, , 1990. Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Med Entomol 27: 892898.[Crossref] [Google Scholar]
  43. Rajagopalan PK, Curtis CF, Brooks GD, Menon PK, , 1977. Density dependence of larval mortality of Culex pipiens fatigans in an urban situation and prediction of its effects on genetic-control operations. Indian J Med Res 65 (Suppl S): 7787. [Google Scholar]
  44. Bellows TS, , 1981. The descriptive properties of some models for density dependence. J Anim Ecol 50: 139156.[Crossref] [Google Scholar]
  45. Washburn JO, Mercer DR, Anderson DR, , 1991. Regulatory role of parasites: impact on host population shifts with resource availability. Science 253: 185188.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 12 Jun 2012
  • Accepted : 09 Mar 2013
  • Published online : 10 Jul 2013

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error